Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metabolites ; 12(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36295829

RESUMO

Metabolomic analyses in alkaptonuria (AKU) have recently revealed alternative pathways in phenylalanine-tyrosine (phe-tyr) metabolism from biotransformation of homogentisic acid (HGA), the active molecule in this disease. The aim of this research was to study the phe-tyr metabolic pathway and whether the metabolites upstream of HGA, increased in nitisinone-treated patients, also undergo phase 1 and 2 biotransformation reactions. Metabolomic analyses were performed on serum and urine from patients partaking in the SONIA 2 phase 3 international randomised-controlled trial of nitisinone in AKU (EudraCT no. 2013-001633-41). Serum and urine samples were taken from the same patients at baseline (pre-nitisinone) then at 24 and 48 months on nitisinone treatment (patients N = 47 serum; 53 urine) or no treatment (patients N = 45 serum; 50 urine). Targeted feature extraction was performed to specifically mine data for the entire complement of theoretically predicted phase 1 and 2 biotransformation products derived from phenylalanine, tyrosine, 4-hydroxyphenylpyruvic acid and 4-hydroxyphenyllactic acid, in addition to phenylalanine-derived metabolites with known increases in phenylketonuria. In total, we observed 13 phase 1 and 2 biotransformation products from phenylalanine through to HGA. Each of these products were observed in urine and two were detected in serum. The derivatives of the metabolites upstream of HGA were markedly increased in urine of nitisinone-treated patients (fold change 1.2-16.2) and increases in 12 of these compounds were directly proportional to the degree of nitisinone-induced hypertyrosinaemia (correlation coefficient with serum tyrosine = 0.2-0.7). Increases in the urinary phenylalanine metabolites were also observed across consecutive visits in the treated group. Nitisinone treatment results in marked increases in a wider network of phe-tyr metabolites than shown before. This network comprises alternative biotransformation products from the major metabolites of this pathway, produced by reactions including hydration (phase 1) and bioconjugation (phase 2) of acetyl, methyl, acetylcysteine, glucuronide, glycine and sulfate groups. We propose that these alternative routes of phe-tyr metabolism, predominantly in urine, minimise tyrosinaemia as well as phenylalanaemia.

2.
JIMD Rep ; 48(1): 67-74, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31392115

RESUMO

BACKGROUND: The homogentisic acid-lowering therapy nitisinone is being evaluated for the treatment of alkaptonuria (AKU) at the National Centre for AKU. Beyond hypertyrosinemia, the wider metabolic consequences of its use are largely unknown. The aim of this work was to evaluate the impact of nitisinone on the serum metabolome of patients with AKU after 12 and 24 months of treatment. METHODS: Deproteinized serum from 25 patients with AKU (mean age[±SD] 51.1 ± 14.9 years, 12 male) was analyzed using the 1290 Infinity II liquid chromatography system coupled to a 6550 quadrupole time-of-flight mass spectrometry (Agilent, UK). Raw data were processed using a batch targeted feature extraction algorithm and an accurate mass retention time database containing 469 intermediary metabolites (MW 72-785). Matched entities (±10 ppm theoretical accurate mass and ±0.3 minutes retention time window) were filtered based on their frequency and variability (<25% CV) in group quality control samples, and repeated measures statistical significance analysis with Benjamini-Hochberg false discovery rate adjustment was used to assess changes in metabolite abundance. RESULTS: Eight metabolites increased in abundance (log2 fold change [FC] 2.1-15.2, P < .05); 7 of 8 entities were related to tyrosine metabolism, and 13 decreased in abundance (log2 FC 1.5-15.5, P < .05); including entities related to tyrosine (n = 2), tryptophan (n = 3), xanthine (n = 2), and citric acid cycle metabolism (n = 2). CONCLUSIONS: Evaluation of the serum metabolome of patients with AKU showed a significant difference in the abundance of several metabolites following treatment with nitisinone, including a number that have not been previously reported; several of these were not related to the tyrosine metabolic pathway. SYNOPSIS: Nitisinone therapy has a significant impact on several metabolites beyond the tyrosine metabolic pathway, several of which appear to be related to the redox state of the cell.

3.
Clin Chem ; 65(4): 530-539, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782595

RESUMO

BACKGROUND: Identification of unknown chemical entities is a major challenge in metabolomics. To address this challenge, we developed a comprehensive targeted profiling strategy, combining 3 complementary liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) techniques and in-house accurate mass retention time (AMRT) databases established from commercial standards. This strategy was used to evaluate the effect of nitisinone on the urinary metabolome of patients and mice with alkaptonuria (AKU). Because hypertyrosinemia is a known consequence of nitisinone therapy, we investigated the wider metabolic consequences beyond hypertyrosinemia. METHODS: A total of 619 standards (molecular weight, 45-1354 Da) covering a range of primary metabolic pathways were analyzed using 3 liquid chromatography methods-2 reversed phase and 1 normal phase-coupled to QTOF-MS. Separate AMRT databases were generated for the 3 methods, comprising chemical name, formula, theoretical accurate mass, and measured retention time. Databases were used to identify chemical entities acquired from nontargeted analysis of AKU urine: match window theoretical accurate mass ±10 ppm and retention time ±0.3 min. RESULTS: Application of the AMRT databases to data acquired from analysis of urine from 25 patients with AKU (pretreatment and after 3, 12, and 24 months on nitisinone) and 18 HGD -/- mice (pretreatment and after 1 week on nitisinone) revealed 31 previously unreported statistically significant changes in metabolite patterns and abundance, indicating alterations to tyrosine, tryptophan, and purine metabolism after nitisinone administration. CONCLUSIONS: The comprehensive targeted profiling strategy described here has the potential of enabling discovery of novel pathways associated with pathogenesis and management of AKU.


Assuntos
Alcaptonúria/metabolismo , Cicloexanonas/farmacologia , Metaboloma/efeitos dos fármacos , Nitrobenzoatos/farmacologia , Idoso , Alcaptonúria/tratamento farmacológico , Animais , Cromatografia Líquida/métodos , Cromatografia Líquida/estatística & dados numéricos , Bases de Dados de Compostos Químicos , Feminino , Técnicas de Silenciamento de Genes , Homogentisato 1,2-Dioxigenase/genética , Humanos , Masculino , Espectrometria de Massas/métodos , Espectrometria de Massas/estatística & dados numéricos , Metabolômica/métodos , Camundongos , Pessoa de Meia-Idade , Fenótipo
4.
Anal Chem ; 84(16): 6963-72, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22799605

RESUMO

Combining data from multiple analytical platforms is essential for comprehensive study of the molecular phenotype (metabotype) of a given biological sample. The metabolite profiles generated are intrinsically dependent on the analytical platforms, each requiring optimization of instrumental parameters, separation conditions, and sample extraction to deliver maximal biological information. An in-depth evaluation of extraction protocols for characterizing the metabolome of the hepatobiliary fluke Fasciola hepatica , using ultra performance liquid chromatography and capillary electrophoresis coupled with mass spectroscopy is presented. The spectrometric methods were characterized by performance, and metrics of merit were established, including precision, mass accuracy, selectivity, sensitivity, and platform stability. Although a core group of molecules was common to all methods, each platform contributed a unique set, whereby 142 metabolites out of 14,724 features were identified. A mixture design revealed that the chloroform:methanol:water proportion of 15:59:26 was globally the best composition for metabolite extraction across UPLC-MS and CE-MS platforms accommodating different columns and ionization modes. Despite the general assumption of the necessity of platform-adapted protocols for achieving effective metabotype characterization, we show that an appropriately designed single extraction procedure is able to fit the requirements of all technologies. This may constitute a paradigm shift in developing efficient protocols for high-throughput metabolite profiling with more-general analytical applicability.


Assuntos
Fracionamento Químico/métodos , Fasciola hepatica/metabolismo , Metabolômica/métodos , Animais , Cromatografia Líquida de Alta Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA