Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 8: 838, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209212

RESUMO

The iron exporter ferroportin and its ligand, the hormone hepcidin, control fluxes of stored and recycled iron for use in a variety of essential biochemical processes. Inflammatory disorders and malignancies are often associated with high hepcidin levels, leading to ferroportin down-regulation, iron sequestration in tissue macrophages and subsequent anemia. The objective of this research was to develop reagents to characterize the expression of ferroportin, the interaction between ferroportin and hepcidin, as well as to identify novel ferroportin antagonists capable of maintaining iron export in the presence of hepcidin. Development of investigative tools that enabled cell-based screening assays is described in detail, including specific and sensitive monoclonal antibodies that detect endogenously-expressed human and mouse ferroportin and fluorescently-labeled chemically-synthesized human hepcidin. Large and small molecule antagonists inhibiting hepcidin-mediated ferroportin internalization were identified, and unique insights into the requirements for interaction between these two key iron homeostasis molecules are provided.

2.
PLoS One ; 12(8): e0183390, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837681

RESUMO

For targets that are homogenously expressed, such as CD19 on cells of the B lymphocyte lineage, immunotherapies can be highly effective. Targeting CD19 with blinatumomab, a CD19/CD3 bispecific antibody construct (BiTE®), or with chimeric antigen receptor T cells (CAR-T) has shown great promise for treating certain CD19-positive hematological malignancies. In contrast, solid tumors with heterogeneous expression of the tumor-associated antigen (TAA) may present a challenge for targeted therapies. To prevent escape of TAA-negative cancer cells, immunotherapies with a local bystander effect would be beneficial. As a model to investigate BiTE®-mediated bystander killing in the solid tumor setting, we used epidermal growth factor receptor (EGFR) as a target. We measured lysis of EGFR-negative populations in vitro and in vivo when co-cultured with EGFR-positive cells, human T cells and an EGFR/CD3 BiTE® antibody construct. Bystander EGFR-negative cells were efficiently lysed by BiTE®-activated T cells only when proximal to EGFR-positive cells. Our mechanistic analysis suggests that cytokines released by BiTE®-activated T-cells induced upregulation of ICAM-1 and FAS on EGFR-negative bystander cells, contributing to T cell-induced bystander cell lysis.


Assuntos
Anticorpos Biespecíficos/imunologia , Efeito Espectador , Neoplasias/patologia , Linfócitos T/imunologia , Animais , Técnicas de Cocultura , Citocinas/metabolismo , Citotoxicidade Imunológica , Receptores ErbB/metabolismo , Feminino , Xenoenxertos , Humanos , Ativação Linfocitária , Camundongos , Camundongos Nus
3.
Cell Metab ; 15(6): 905-17, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22682226

RESUMO

Ferroportin is the primary means of cellular iron efflux and a key component of iron metabolism. Hepcidin regulates Fpn activity by inducing its internalization and degradation. The mechanism of internalization is reported to require JAK2 activation, phosphorylation of Fpn tyrosine residues 302 and 303, and initiation of transcription through STAT3 phosphorylation. These findings suggest Fpn may be a target for therapeutic intervention through JAK2 modulation. To evaluate the proposed mechanism, Fpn internalization was assessed using several techniques combined with reagents that specifically recognized cell-surface Fpn. In vitro results demonstrated that Hepc-induced Fpn internalization did not require JAK2 or phosphorylation of Fpn residues 302 and 303, nor did it induce JAK-STAT signaling. In vivo, inhibition of JAK2 had no effect on Hepc-induced hypoferremia. However, internalization was delayed by mutation of two Fpn lysine residues that may be targets of ubiquitination.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Janus Quinase 2/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição STAT/metabolismo , Tirosina/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Peptídeos Catiônicos Antimicrobianos , Proteínas de Transporte de Cátions/genética , Células HEK293 , Hepcidinas , Humanos , Janus Quinase 2/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Transporte Proteico , Transdução de Sinais , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA