Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Front Immunol ; 15: 1451705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39185415

RESUMO

DEAD-box helicases are multifunctional proteins participating in many aspects of cellular RNA metabolism. DEAD-box helicase 41 (DDX41) in particular has pivotal roles in innate immune sensing and hematopoietic homeostasis. DDX41 recognizes foreign or self-nucleic acids generated during microbial infection, thereby initiating anti-pathogen responses. DDX41 also binds to RNA (R)-loops, structures consisting of DNA/RNA hybrids and a displaced strand of DNA that occur during transcription, thereby maintaining genome stability by preventing their accumulation. DDX41 deficiency leads to increased R-loop levels, resulting in inflammatory responses that likely influence hematopoietic stem and progenitor cell production and development. Beyond nucleic acid binding, DDX41 associates with proteins involved in RNA splicing as well as cellular proteins involved in innate immunity. DDX41 is also a tumor suppressor in familial and sporadic myelodysplastic syndrome/acute myelogenous leukemia (MDS/AML). In the present review, we summarize the functions of DDX helicases in critical biological processes, particularly focusing on DDX41's association with cellular molecules and the mechanisms underlying its roles in innate immunity, hematopoiesis and the development of myeloid malignancies.


Assuntos
RNA Helicases DEAD-box , Hematopoese , Imunidade Inata , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , Hematopoese/imunologia , Animais
2.
Cell Rep ; 43(7): 114388, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935497

RESUMO

In contrast to most hematopoietic lineages, megakaryocytes (MKs) can derive rapidly and directly from hematopoietic stem cells (HSCs). The underlying mechanism is unclear, however. Here, we show that DNA damage induces MK markers in HSCs and that G2 arrest, an integral part of the DNA damage response, suffices for MK priming followed by irreversible MK differentiation in HSCs, but not in progenitors. We also show that replication stress causes DNA damage in HSCs and is at least in part due to uracil misincorporation in vitro and in vivo. Consistent with this notion, thymidine attenuated DNA damage, improved HSC maintenance, and reduced the generation of CD41+ MK-committed HSCs. Replication stress and concomitant MK differentiation is therefore one of the barriers to HSC maintenance. DNA damage-induced MK priming may allow rapid generation of a lineage essential to immediate organismal survival, while also removing damaged cells from the HSC pool.


Assuntos
Diferenciação Celular , Dano ao DNA , Células-Tronco Hematopoéticas , Megacariócitos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Animais , Camundongos , Megacariócitos/metabolismo , Megacariócitos/citologia , Trombopoese , Pontos de Checagem da Fase G2 do Ciclo Celular , Camundongos Endogâmicos C57BL , Humanos
3.
mBio ; 15(7): e0120924, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38860764

RESUMO

Mammalian AIM-2-like receptor (ALR) proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. In mice, the Alr locus is highly polymorphic at the sequence and copy number level, and we show here that it is one of the most dynamic regions of the genome. One rapidly evolving gene within this region, Ifi207, was introduced to the Mus genome by gene conversion or an unequal recombination event a few million years ago. Ifi207 has a large, distinctive repeat region that differs in sequence and length among Mus species and even closely related inbred Mus musculus strains. We show that IFI207 controls murine leukemia virus (MLV) infection in vivo and that it plays a role in the STING-mediated response to cGAMP, dsDNA, DMXXA, and MLV. IFI207 binds to STING, and inclusion of its repeat region appears to stabilize STING protein. The Alr locus and Ifi207 provide a clear example of the evolutionary innovation of gene function, possibly as a result of host-pathogen co-evolution.IMPORTANCEThe Red Queen hypothesis predicts that the arms race between pathogens and the host may accelerate evolution of both sides, and therefore causes higher diversity in virulence factors and immune-related proteins, respectively . The Alr gene family in mice has undergone rapid evolution in the last few million years and includes the creation of two novel members, MndaL and Ifi207. Ifi207, in particular, became highly divergent, with significant genetic changes between highly related inbred mice. IFI207 protein acts in the STING pathway and contributes to anti-retroviral resistance via a novel mechanism. The data show that under the pressure of host-pathogen coevolution in a dynamic locus, gene conversion and recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.


Assuntos
Proteínas de Membrana , Replicação Viral , Animais , Camundongos , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
Front Microbiol ; 15: 1382953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650890

RESUMO

Arenaviruses belonging to the Arenaviridae family, genus mammarenavirus, are enveloped, single-stranded RNA viruses primarily found in rodent species, that cause severe hemorrhagic fever in humans. With high mortality rates and limited treatment options, the search for effective antivirals is imperative. Current treatments, notably ribavirin and other nucleoside inhibitors, are only partially effective and have significant side effects. The high lethality and lack of treatment, coupled with the absence of vaccines for all but Junín virus, has led to the classification of these viruses as Category A pathogens by the Centers for Disease Control (CDC). This review focuses on entry inhibitors as potential therapeutics against mammarenaviruses, which include both New World and Old World arenaviruses. Various entry inhibition strategies, including small molecule inhibitors and neutralizing antibodies, have been explored through high throughput screening, genome-wide studies, and drug repurposing. Notable progress has been made in identifying molecules that target receptor binding, internalization, or fusion steps. Despite promising preclinical results, the translation of entry inhibitors to approved human therapeutics has faced challenges. Many have only been tested in in vitro or animal models, and a number of candidates showed efficacy only against specific arenaviruses, limiting their broader applicability. The widespread existence of arenaviruses in various rodent species and their potential for their zoonotic transmission also underscores the need for rapid development and deployment of successful pan-arenavirus therapeutics. The diverse pool of candidate molecules in the pipeline provides hope for the eventual discovery of a broadly effective arenavirus antiviral.

5.
PLoS Pathog ; 20(1): e1011640, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215165

RESUMO

Retroviral reverse transcription starts within the capsid and uncoating and reverse transcription are mutually dependent. There is still debate regarding the timing and cellular location of HIV's uncoating and reverse transcription and whether it occurs solely in the cytoplasm, nucleus or both. HIV can infect non-dividing cells because there is active transport of the preintegration complex (PIC) across the nuclear membrane, but Murine Leukemia Virus (MLV) is thought to depend on cell division for replication and whether MLV uncoating and reverse transcription is solely cytoplasmic has not been studied. Here, we used NIH3T3 and primary mouse dendritic cells to determine where the different stages of reverse transcription occur and whether cell division is needed for nuclear entry. Our data strongly suggest that in both NIH3T3 cells and dendritic cells (DCs), the initial step of reverse transcription occurs in the cytoplasm. However, we detected MLV RNA/DNA hybrid intermediates in the nucleus of dividing NIH3T3 cells and non-dividing DCs, suggesting that reverse transcription can continue after nuclear entry. We also confirmed that the MLV PIC requires cell division to enter the nucleus of NIH3T3 cells. In contrast, we show that MLV can infect non-dividing primary DCs, although integration of MLV DNA in DCs still required the viral p12 protein. Knockdown of several nuclear pore proteins dramatically reduced the appearance of integrated MLV DNA in DCs but not NIH3T3 cells. Additionally, MLV capsid associated with the nuclear pore proteins NUP358 and NUP62 during infection. These findings suggest that simple retroviruses, like the complex retrovirus HIV, gain nuclear entry by traversing the nuclear pore complex in non-mitotic cells.


Assuntos
Infecções por HIV , Complexo de Proteínas Formadoras de Poros Nucleares , Animais , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Células NIH 3T3 , Vírus da Leucemia Murina/genética , Proteínas Virais , Proteínas do Capsídeo , Retroviridae , DNA , Células Dendríticas
6.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333356

RESUMO

Hematopoietic stem cells (HSCs) reside in the bone marrow (BM), can self-renew, and generate all cells of the hematopoietic system. 1 Most hematopoietic lineages arise through successive, increasingly lineage-committed progenitors. In contrast, megakaryocytes (MKs), hyperploid cells that generate platelets essential to hemostasis, can derive rapidly and directly from HSCs. 2 The underlying mechanism is unknown however. Here we show that DNA damage and subsequent arrest in the G2 phase of the cell cycle rapidly induce MK commitment specifically in HSCs, but not in progenitors, through an initially predominantly post-transcriptional mechanism. Cycling HSCs show extensive replication-induced DNA damage associated with uracil misincorporation in vivo and in vitro . Consistent with this notion, thymidine attenuated DNA damage, rescued HSC maintenance and reduced the generation of CD41 + MK-committed HSCs in vitro . Similarly, overexpression of the dUTP-scavenging enzyme, dUTPase, enhanced in vitro maintenance of HSCs. We conclude that a DNA damage response drives direct megakaryopoiesis and that replication stress-induced direct megakaryopoiesis, at least in part caused by uracil misincorporation, is a barrier to HSC maintenance in vitro . DNA damage-induced direct megakaryopoiesis may allow rapid generation of a lineage essential to immediate organismal survival, while simultaneously removing damaged HSCs and potentially avoiding malignant transformation of self-renewing stem cells.

7.
bioRxiv ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711784

RESUMO

Mammalian ALR proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. ALR s are encoded at a single genetic locus. In mice, the Alr locus is highly polymorphic at the sequence and copy number level. We suggest that one rapidly evolving member of the Alr family, Ifi207 , was introduced to the Mus genome by a recent recombination event. Ifi207 has a large, distinctive repeat region that differs in sequence and length in different Mus strains. We show that IFI207 plays a key role in the STING-mediated response to cGAMP, DNA, and MLV, and that IFI207 controls MLV infection in vivo. Uniquely, IFI207 acts by stabilizing STING protein via its repeat region. Our studies suggest that under the pressure of host-pathogen coevolution, in a dynamic locus such as the Alr , recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.

8.
Cancer Res ; 83(4): 506-520, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36480186

RESUMO

Mutagenic processes leave distinct signatures in cancer genomes. The mutational signatures attributed to APOBEC3 cytidine deaminases are pervasive in human cancers. However, data linking individual APOBEC3 proteins to cancer mutagenesis in vivo are limited. Here, we showed that transgenic expression of human APOBEC3G promotes mutagenesis, genomic instability, and kataegis, leading to shorter survival in a murine bladder cancer model. Acting as mutagenic fuel, APOBEC3G increased the clonal diversity of bladder cancer, driving divergent cancer evolution. Characterization of the single-base substitution signature induced by APOBEC3G in vivo established the induction of a mutational signature distinct from those caused by APOBEC3A and APOBEC3B. Analysis of thousands of human cancers revealed the contribution of APOBEC3G to the mutational profiles of multiple cancer types, including bladder cancer. Overall, this study dissects the mutagenic impact of APOBEC3G on the bladder cancer genome, identifying that it contributes to genomic instability, tumor mutational burden, copy-number loss events, and clonal diversity. SIGNIFICANCE: APOBEC3G plays a role in cancer mutagenesis and clonal heterogeneity, which can potentially inform future therapeutic efforts that restrict tumor evolution. See related commentary by Caswell and Swanton, p. 487.


Assuntos
Desaminase APOBEC-3G , Evolução Clonal , Mutagênese , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Desaminase APOBEC-3G/genética , Desaminase APOBEC-3G/metabolismo , Evolução Clonal/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Instabilidade Genômica , Antígenos de Histocompatibilidade Menor/genética , Mutagênese/genética , Mutagênicos , Neoplasias da Bexiga Urinária/genética
9.
Cell Rep ; 39(8): 110856, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613581

RESUMO

Upon binding double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) is activated and initiates the cGAS-stimulator of IFN genes (STING)-type I interferon pathway. DEAD-box helicase 41 (DDX41) is a DEAD-box helicase, and mutations in DDX41 cause myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). Here, we show that DDX41-knockout (KO) cells have reduced type I interferon production after DNA virus infection. Unexpectedly, activations of cGAS and STING are affected in DDX41 KO cells, suggesting that DDX41 functions upstream of cGAS. The recombinant DDX41 protein exhibits ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity. The MDS/AML-derived mutant R525H has reduced unwinding activity but retains normal strand-annealing activity and stimulates greater cGAS dinucleotide-synthesis activity than wild-type DDX41. Overexpression of R525H in either DDX41-deficient or -proficient cells results in higher type I interferon production. Our results have led to the hypothesis that DDX41 utilizes its unwinding and annealing activities to regulate the homeostasis of dsDNA and single-stranded DNA (ssDNA), which, in turn, regulates cGAS-STING activation.


Assuntos
Infecções por Vírus de DNA , Interferon Tipo I , Leucemia Mieloide Aguda , Trifosfato de Adenosina , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Humanos , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais
10.
Stem Cell Reports ; 17(4): 879-893, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35303436

RESUMO

DDX41 is a tumor suppressor frequently mutated in human myeloid neoplasms, but whether it affects hematopoiesis is unknown. Using a knockout mouse, we demonstrate that DDX41 is required for mouse hematopoietic stem and progenitor cell (HSPC) survival and differentiation, particularly of myeloid lineage cells. Transplantation of Ddx41 knockout fetal liver and adult bone marrow (BM) cells was unable to rescue mice from lethal irradiation, and knockout stem cells were also defective in colony formation assays. RNA-seq analysis of Lin-/cKit+/Sca1+Ddx41 knockout cells from fetal liver demonstrated that the expression of many genes associated with hematopoietic differentiation were altered. Furthermore, differential splicing of genes involved in key biological processes was observed. Our data reveal a critical role for DDX41 in HSPC differentiation and myeloid progenitor development, likely through regulating gene expression programs and splicing.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Knockout
11.
J Virol ; 95(22): e0124421, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468176

RESUMO

Apolipoprotein B mRNA editing enzyme catalytic subunit 3 (APOBEC3) proteins are critical for the control of infection by retroviruses. These proteins deaminate cytidines in negative-strand DNA during reverse transcription, leading to G-to-A changes in coding strands. Uracil DNA glycosylase (UNG) is a host enzyme that excises uracils in genomic DNA, which the base excision repair machinery then repairs. Whether UNG removes uracils found in retroviral DNA after APOBEC3-mediated mutation is not clear, and whether this occurs in vivo has not been demonstrated. To determine if UNG plays a role in the repair of retroviral DNA, we used APOBEC3G (A3G) transgenic mice which we showed previously had extensive deamination of murine leukemia virus (MLV) proviruses. The A3G transgene was crossed onto an Ung and mouse Apobec3 knockout background (UNG-/-APO-/-), and the mice were infected with MLV. We found that virus infection levels were decreased in A3G UNG-/-APO-/- compared with A3G APO-/- mice. Deep sequencing of the proviruses showed that there were significantly higher levels of G-to-A mutations in proviral DNA from A3G transgenic UNG-/-APO-/- than A3G transgenic APO-/- mice, suggesting that UNG plays a role in the repair of uracil-containing proviruses. In in vitro studies, we found that cytoplasmic viral DNA deaminated by APOBEC3G was uracilated. In the absence of UNG, the uracil-containing proviruses integrated at higher levels into the genome than those made in the presence of UNG. Thus, UNG also functions in the nucleus prior to integration by nicking uracil-containing viral DNA, thereby blocking integration. These data show that UNG plays a critical role in the repair of the damage inflicted by APOBEC3 deamination of reverse-transcribed DNA. IMPORTANCE While APOBEC3-mediated mutation of retroviruses is well-established, what role the host base excision repair enzymes play in correcting these mutations is not clear. This question is especially difficult to address in vivo. Here, we use a transgenic mouse developed by our lab that expresses human APOBEC3G and also lacks the endogenous uracil DNA glycosylase (Ung) gene and show that UNG removes uracils introduced by this cytidine deaminase in MLV reverse transcripts, thereby reducing G-to-A mutations in proviruses. Furthermore, our data suggest that UNG removes uracils at two stages in infection-first, in unintegrated nuclear viral reverse-transcribed DNA, resulting in its degradation; and second, in integrated proviruses, resulting in their repair. These data suggest that retroviruses damaged by host cytidine deaminases take advantage of the host DNA repair system to overcome this damage.


Assuntos
Desaminase APOBEC-3G/imunologia , DNA Viral/imunologia , Infecções por Retroviridae , Retroviridae , Uracila-DNA Glicosidase/imunologia , Animais , Reparo do DNA , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Células NIH 3T3 , Retroviridae/genética , Retroviridae/imunologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia
13.
PLoS Pathog ; 17(6): e1009662, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097709

RESUMO

Signal-regulatory protein alpha (SIRPA) is a well-known inhibitor of phagocytosis when it complexes with CD47 expressed on target cells. Here we show that SIRPA decreased in vitro infection by a number of pathogenic viruses, including New World and Old World arenaviruses, Zika virus, vesicular stomatitis virus and pseudoviruses bearing the Machupo virus, Ebola virus and SARS-CoV-2 glycoproteins, but not HSV-1, MLV or mNoV. Moreover, mice with targeted mutation of the Sirpa gene that renders it non-functional were more susceptible to infection with the New World arenaviruses Junín virus vaccine strain Candid 1 and Tacaribe virus, but not MLV or mNoV. All SIRPA-inhibited viruses have in common the requirement for trafficking to a low pH endosomal compartment. This was clearly demonstrated with SARS-CoV-2 pseudovirus, which was only inhibited by SIRPA in cells in which it required trafficking to the endosome. Similar to its role in phagocytosis inhibition, SIRPA decreased virus internalization but not binding to cell surface receptors. We also found that increasing SIRPA levels via treatment with IL-4 led to even greater anti-viral activity. These data suggest that enhancing SIRPA's activity could be a target for anti-viral therapies.


Assuntos
Endocitose , Vírus de RNA/imunologia , Receptores Imunológicos/fisiologia , Internalização do Vírus , Animais , Antivirais/farmacologia , Linhagem Celular , Membrana Celular/virologia , Chlorocebus aethiops , Sistemas de Liberação de Medicamentos , Integrinas/imunologia , Interleucina-4/farmacologia , Camundongos , Camundongos Knockout , Domínios Proteicos , Receptores Imunológicos/genética , Células Vero
14.
Nat Cancer ; 2(12): 1338-1356, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35121902

RESUMO

Despite efforts in understanding its underlying mechanisms, the etiology of chromosomal instability (CIN) remains unclear for many tumor types. Here, we identify CIN initiation as a previously undescribed function for APOBEC3A (A3A), a cytidine deaminase upregulated across cancer types. Using genetic mouse models of pancreatic ductal adenocarcinoma (PDA) and genomics analyses in human tumor cells we show that A3A-induced CIN leads to aggressive tumors characterized by enhanced early dissemination and metastasis in a STING-dependent manner and independently of the canonical deaminase functions of A3A. We show that A3A upregulation recapitulates numerous copy number alterations commonly observed in patients with PDA, including co-deletions in DNA repair pathway genes, which in turn render these tumors susceptible to poly (ADP-ribose) polymerase inhibition. Overall, our results demonstrate that A3A plays an unexpected role in PDA as a specific driver of CIN, with significant effects on disease progression and treatment.


Assuntos
Citidina Desaminase , Neoplasias Pancreáticas , Animais , Instabilidade Cromossômica/genética , Citidina Desaminase/genética , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Proteínas/genética , Neoplasias Pancreáticas
15.
Viruses ; 12(11)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121095

RESUMO

Apolipoprotein B mRNA editing enzyme, catalytic peptide 3 (APOBEC3) proteins are critical host proteins that counteract and prevent the replication of retroviruses. Unlike the genome of humans and other species, the mouse genome encodes a single Apobec3 gene, which has undergone positive selection, as reflected by the allelic variants found in different inbred mouse strains. This positive selection was likely due to infection by various mouse retroviruses, which have persisted in their hosts for millions of years. While mouse retroviruses are inhibited by APOBEC3, they nonetheless still remain infectious, likely due to the actions of different viral proteins that counteract this host factor. The study of viruses in their natural hosts provides important insight into their co-evolution.


Assuntos
Citidina Desaminase/genética , Interações Hospedeiro-Patógeno/genética , Infecções por Retroviridae/virologia , Retroviridae/patogenicidade , Animais , Vírus da Leucemia Murina/patogenicidade , Vírus do Tumor Mamário do Camundongo/patogenicidade , Camundongos , Infecções Tumorais por Vírus/virologia , Replicação Viral
16.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32870257

RESUMO

The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis. All other APOBEC3 family members, including APOBEC3B, fail to promote liver tumor formation. Tumor DNA sequences from APOBEC3A-expressing animals display hallmark APOBEC signature mutations in TCA/T motifs. Bioinformatic comparisons of the observed APOBEC3A mutation signature in murine tumors, previously reported APOBEC3A and APOBEC3B mutation signatures in yeast, and reanalyzed APOBEC mutation signatures in human tumor datasets support cause-and-effect relationships for APOBEC3A-catalyzed deamination and mutagenesis in driving multiple human cancers.


Assuntos
Biocatálise , Carcinogênese/genética , Citidina Desaminase/genética , Mutação/genética , Proteínas/genética , Polipose Adenomatosa do Colo/patologia , Animais , Sequência de Bases , Carcinogênese/patologia , Elementos de DNA Transponíveis/genética , Humanos , Hidrolases/genética , Neoplasias Intestinais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Regeneração Hepática , Perda de Heterozigosidade/genética , Camundongos Transgênicos , Pólipos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Viruses ; 12(8)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751803

RESUMO

Retroviruses are major causes of disease in animals and human. Better understanding of the initial host immune response to these viruses could provide insight into how to limit infection. Mouse retroviruses that are endemic in their hosts provide an important genetic tool to dissect the different arms of the innate immune system that recognize retroviruses as foreign. Here, we review what is known about the major branches of the innate immune system that respond to mouse retrovirus infection, Toll-like receptors and nucleic acid sensors, and discuss the importance of these responses in activating adaptive immunity and controlling infection.


Assuntos
Imunidade Inata , Camundongos/virologia , Infecções por Retroviridae/imunologia , Retroviridae/imunologia , Animais , Interações entre Hospedeiro e Microrganismos/imunologia , Retroviridae/genética , Infecções por Retroviridae/virologia , Replicação Viral
18.
Proc Natl Acad Sci U S A ; 117(32): 19497-19506, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719120

RESUMO

Understanding the genetics of susceptibility to infectious agents is of great importance to our ability to combat disease. Here, we show that voltage-gated calcium channels (VGCCs) are critical for cellular binding and entry of the New World arenaviruses Junín and Tacaribe virus, suggesting that zoonosis via these receptors could occur. Moreover, we demonstrate that α1s haploinsufficiency renders cells and mice more resistant to infection by these viruses. In addition to being more resistant to infection, haploinsufficient cells and mice required a lower dosage of VGCC antagonists to block infection. These studies underscore the importance of genetic variation in susceptibility to both viruses and pharmaceutics.


Assuntos
Infecções por Arenaviridae/genética , Canais de Cálcio Tipo L/genética , Resistência à Doença/genética , Animais , Infecções por Arenaviridae/tratamento farmacológico , Arenavirus do Novo Mundo/fisiologia , Agonistas dos Canais de Cálcio/farmacologia , Agonistas dos Canais de Cálcio/uso terapêutico , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/deficiência , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Heterozigoto , Humanos , Camundongos , Camundongos Mutantes , Mutação , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
19.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32641479

RESUMO

Apolipoprotein B editing enzyme, catalytic polypeptide 3 (APOBEC3) family members are cytidine deaminases that play important roles in intrinsic responses to retrovirus infection. Complex retroviruses like human immunodeficiency virus type 1 (HIV-1) encode the viral infectivity factor (Vif) protein to counteract APOBEC3 proteins. Vif induces degradation of APOBEC3G and other APOBEC3 proteins and thereby prevents their packaging into virions. It is not known if murine leukemia virus (MLV) encodes a Vif-like protein. Here, we show that the MLV P50 protein, produced from an alternatively spliced gag RNA, interacts with the C terminus of mouse APOBEC3 and prevents its packaging without causing its degradation. By infecting APOBEC3 knockout (KO) and wild-type (WT) mice with Friend or Moloney MLV P50-deficient viruses, we found that APOBEC3 restricts the mutant viruses more than WT viruses in vivo Replication of P50-mutant viruses in an APOBEC3-expressing stable cell line was also much slower than that of WT viruses, and overexpressing P50 in this cell line enhanced mutant virus replication. Thus, MLV encodes a protein, P50, that overcomes APOBEC3 restriction by preventing its packaging into virions.IMPORTANCE MLV has existed in mice for at least a million years, in spite of the existence of host restriction factors that block infection. Although MLV is considered a simple retrovirus compared to lentiviruses, it does encode proteins generated from alternatively spliced RNAs. Here, we show that P50, generated from an alternatively spliced RNA encoded in gag, counteracts APOBEC3 by blocking its packaging. MLV also encodes a protein, glycoGag, that increases capsid stability and limits APOBEC3 access to the reverse transcription complex (RTC). Thus, MLV has evolved multiple means of preventing APOBEC3 from blocking infection, explaining its survival as an infectious pathogen in mice.


Assuntos
Citidina Desaminase/genética , Regulação Viral da Expressão Gênica , Produtos do Gene gag/genética , Leucemia Experimental/genética , Vírus da Leucemia Murina de Moloney/genética , Infecções por Retroviridae/genética , Infecções Tumorais por Vírus/genética , Processamento Alternativo , Animais , Capsídeo/metabolismo , Citidina Desaminase/deficiência , Produtos do Gene gag/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Leucemia Experimental/metabolismo , Leucemia Experimental/virologia , Camundongos , Camundongos Knockout , Vírus da Leucemia Murina de Moloney/metabolismo , Vírus da Leucemia Murina de Moloney/patogenicidade , Células NIH 3T3 , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/virologia , Transdução de Sinais , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/virologia , Vírion/genética , Vírion/metabolismo , Vírion/patogenicidade , Replicação Viral
20.
Neurobiol Dis ; 140: 104845, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205255

RESUMO

We analyzed Trim2A/A mice, generated by CRISPR-Cas9, which have a recessive, null mutation of Trim2. Trim2A/A mice develop ataxia that is associated with a severe loss of cerebellar Purkinje cells and a peripheral neuropathy. Myelinated axons in the CNS, including those in the deep cerebellar nuclei, have focal enlargements that contain mitochondria and neurofilaments. In the PNS, there is a loss of myelinated axons, particularly in the most distal nerves. The pathologically affected neuronal populations - primary sensory and motor neurons as well as cerebellar Purkinje cells - express TRIM2, suggesting that loss of TRIM2 in these neurons results in cell autonomous effects on their axons. In contrast, these pathological findings were not found in a second strain of Trim2 mutant mice (Trim2C/C), which has a partial deletion in the RING domain that is needed for ubiquitin ligase activity. Both the Trim2Aand the Trim2C alleles encode mutant TRIM2 proteins with reduced ubiquitination activity. In sum, Trim2A/A mice are a genetically authentic animal model of a recessive axonal neuropathy of humans, apparently for a function that does not depend on the ubiquitin ligase activity.


Assuntos
Axônios/patologia , Doença de Charcot-Marie-Tooth/genética , Mutação , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Animais , Filamentos Intermediários/metabolismo , Camundongos , Neurônios Motores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA