RESUMO
PURPOSE: Germline genetic testing (GT) is recommended for men with prostate cancer (PC), but testing through traditional models is limited. The ProGen study examined a novel model aimed at providing access to GT while promoting education and informed consent. METHODS: Men with potentially lethal PC (metastatic, localized with a Gleason score of ≥8, persistent prostate-specific antigen after local therapy), diagnosis age ≤55 years, previous malignancy, and family history suggestive of a pathogenic variant (PV) and/or at oncologist's discretion were randomly assigned 3:1 to video education (VE) or in-person genetic counseling (GC). Participants had 67 genes analyzed (Ambry), with results disclosed via telephone by a genetic counselor. Outcomes included GT consent, GT completion, PV prevalence, and survey measures of satisfaction, psychological impact, genetics knowledge, and family communication. Two-sided Fisher's exact tests were used for between-arm comparisons. RESULTS: Over a 2-year period, 662 participants at three sites were randomly assigned and pretest VE (n = 498) or GC (n = 164) was completed by 604 participants (VE, 93.1%; GC, 88.8%), of whom 596 participants (VE, 98.9%; GC, 97.9%) consented to GT and 591 participants completed GT (VE, 99.3%; GC, 98.6%). These differences were not statistically significant although subtle differences in satisfaction and psychological impact were. Notably, 84 PVs were identified in 78 participants (13.2%), with BRCA1/2 PV comprising 32% of participants with a positive result (BRCA2 n = 21, BRCA1 n = 4). CONCLUSION: Both VE and traditional GC yielded high GT uptake without significant differences in outcome measures of completion, GT uptake, genetics knowledge, and family communication. The increased demand for GT with limited genetics resources supports consideration of pretest VE for patients with PC.
Assuntos
Aconselhamento Genético , Neoplasias da Próstata , Humanos , Masculino , Pessoa de Meia-Idade , Proteína BRCA1/genética , Proteína BRCA2/genética , Estrogênios Conjugados (USP) , Aconselhamento Genético/métodos , Aconselhamento Genético/psicologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapiaRESUMO
Mutations in the BRCA1 tumor suppressor gene, such as 5382insC (BRCA1insC), give carriers an increased risk for breast, ovarian, prostate, and pancreatic cancers. We have previously reported that, in mice, Brca1 deficiency in the hematopoietic system leads to pancytopenia and, as a result, early lethality. We explored the cellular consequences of Brca1-null and BRCA1insC alleles in combination with Trp53 deficiency in the murine hematopoietic system. We found that Brca1 and Trp53 codeficiency led to a highly penetrant erythroproliferative disorder that is characterized by hepatosplenomegaly and by expanded megakaryocyte erythroid progenitor (MEP) and immature erythroid blast populations. The expanded erythroid progenitor populations in both BM and spleen had the capacity to transmit the disease into secondary mouse recipients, suggesting that Brca1 and Trp53 codeficiency provides a murine model of hematopoietic neoplasia. This Brca1/Trp53 model replicated Poly (ADP-ribose) polymerase (PARP) inhibitor olaparib sensitivity seen in existing Brca1/Trp53 breast cancer models and had the benefits of monitoring disease progression and drug responses via peripheral blood analyses without sacrificing experimental animals. In addition, this erythroid neoplasia developed much faster than murine breast cancer, allowing for increased efficiency of future preclinical studies.
Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/farmacologia , Poli(ADP-Ribose) Polimerases/genética , MutaçãoRESUMO
PURPOSE: Hereditary cancer genetic testing can inform personalized medical management for individuals at increased cancer risk. However, many variants in cancer predisposition genes are individually rare, and traditional tools may be insufficient to evaluate pathogenicity. This analysis presents data on variant classification and reclassification over a 20-year period. PATIENTS AND METHODS: This is a retrospective analysis of > 1.9 million individuals who received hereditary cancer genetic testing from a single clinical laboratory (March 1997 to December 2017). Variant classification included review of evidence from traditional tools (eg, population frequency databases, literature) and laboratory-developed tools (eg, novel statistical methods, in-house RNA analysis) by a multidisciplinary expert committee. Variants may have been reclassified more than once and with more than one line of evidence. RESULTS: In this time period, 62,842 unique variants were observed across 25 cancer predisposition genes, and 2,976 variants were reclassified. Overall, 82.1% of reclassification events were downgrades (eg, variant of uncertain significance [VUS] to benign), and 17.9% were upgrades (eg, VUS to pathogenic). Among reclassified variants, 82.8% were initially classified as VUS, and 47.5% were identified in ≤ 20 individuals (allele frequency ≤ 0.001%). Laboratory-developed tools were used in 72.3% of variant reclassification events, which affected > 600,000 individuals. More than 1.3 million patients were identified as carrying a variant that was reclassified within this 20-year time period. CONCLUSION: The variant classification program used by the laboratory evaluated here enabled the reclassification of variants that were individually rare. Laboratory-developed tools were a key component of this program and were used in the majority of reclassifications. This demonstrates the importance of using robust and novel tools to reclassify rare variants to appropriately inform personalized medical management.
Assuntos
Testes Genéticos , Adulto , Quinase do Ponto de Checagem 2/genética , Feminino , Aconselhamento Genético/métodos , Aconselhamento Genético/normas , Predisposição Genética para Doença/genética , Testes Genéticos/normas , Variação Genética/genética , Humanos , Neoplasias/genética , Reprodutibilidade dos Testes , Medição de Risco/métodosRESUMO
In 2016, the UT Southwestern Medical Center's Cancer Genetics Program was awarded a grant (PP160103) by the Cancer Prevention and Research Institute of Texas (CPRIT) to increase awareness of hereditary cancer syndromes, particularly Lynch syndrome (LS), and implement a population-based genetic screening program to identify those at high genetic risk for cancer.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Detecção Precoce de Câncer , Família , Testes Genéticos , Programas de Rastreamento , Anamnese , Neoplasias Colorretais Hereditárias sem Polipose/complicações , Neoplasias do Endométrio/etiologia , Neoplasias do Endométrio/genética , Feminino , Humanos , Neoplasias Ovarianas/etiologia , Neoplasias Ovarianas/genética , Fatores de Risco , TexasRESUMO
Inflammatory bowel disease (IBD) affects 1.5-3.0 million people in the United States. IBD is genetically determined and many common risk alleles have been identified. Yet, a large proportion of genetic predisposition remains unexplained. In this study, we report the identification of an ultr arare missense variant (NM_006998.3:c.230G > A;p.Arg77His) in the SCGN gene causing Mendelian early-onset ulcerative colitis. SCGN encodes a calcium sensor that is exclusively expressed in neuroendocrine lineages, including enteroendocrine cells and gut neurons. SCGN interacts with the SNARE complex, which is required for vesicle fusion with the plasma membrane. We show that the SCGN mutation identified impacted the localization of the SNARE complex partner, SNAP25, leading to impaired hormone release. Finally, we show that mouse models of Scgn deficiency recapitulate impaired hormone release and susceptibility to DSS-induced colitis. Altogether, these studies demonstrate that functional deficiency in SCGN can result in intestinal inflammation and implicates the neuroendocrine cellular compartment in IBD.
Assuntos
Colite Ulcerativa/genética , Predisposição Genética para Doença , Secretagoginas/deficiência , Animais , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Modelos Animais de Doenças , Humanos , Fusão de Membrana , Camundongos , Mutação de Sentido Incorreto , Transporte Proteico , Proteínas SNARE/metabolismo , Secretagoginas/genética , Proteína 25 Associada a Sinaptossoma/metabolismoRESUMO
Both BRCA1 and CREBBP are tumor suppressor genes that are important for hematopoiesis. We have previously shown that mouse Brca1 is essential for hematopoietic stem cell (HSC) viability. In contrast to Brca1 deficiency, which results in pancytopenia, we report here that Crebbp deficiency results in myeloproliferation associated with an increase of splenic HSCs as well as a lethal systemic inflammatory disorder (LD50 = 86 days). To investigate the interaction of these two proteins in hematopoiesis, we generated double Crebbp/Brca1 knockout mice (DKOs). To our surprise, DKOs had accelerated bone marrow failure compared with Brca1-deficient mice and this was associated with an even shorter lifespan (LD50 = 88.5 versus 33 days). Furthermore, Crebbp or Brca1 heterozygosity influenced the hematopoietic phenotype associated with complete deficiency of Brca1 or Crebbp, respectively. We also observed lower BRCA1 protein levels in hematopoietic tissues when CREBBP is absent. Collectively, these data suggest Crebbp and Brca1 functionally interact to maintain normal hematopoiesis.
RESUMO
BACKGROUND: There are no national guidelines for the management of patients with a family history consistent with Lynch syndrome (LS) but a negative genetic test. To determine current management practices, genetic counselors' (GCs) recommendations were assessed. METHODS: A survey of GCs using five hypothetical pedigrees was posted to National Society of Genetic Counselors (NSGC) discussion forums. Descriptive statistics were used. RESULTS: One-hundred and fifteen surveys were completed. A pedigree with a first-degree relative (FDR) with early-onset colorectal cancer (CRC) and a family history of CRC and endometrial cancer (EC) prompted 83% (n = 95) of respondents to recommend early and frequent colonoscopies, based on family history. When the CRCs and ECs occurred in family members removed from the proband, 96% (n = 110) of GCs said they would screen based on family history. However, only 52% (n = 60) suggested CRC screening should begin earlier and occur more often, and 43% (n = 50) suggested CRC screening should follow standard age and frequency guidelines. CONCLUSION: Concordance of opinion among GCs for the management of patients with negative genetic test results exists when FDRs are affected. However, when affected relatives are more distant, GCs disagreed on screening recommendations. These data suggest a need for guidelines for patients with a family history of cancer and a negative genetic test.
Assuntos
Neoplasias do Colo/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias do Endométrio/genética , Família , Aconselhamento Genético , Linhagem , Adulto , Feminino , Humanos , MasculinoRESUMO
The new genetics, defined as that which followed the completion of the human genome project and includes development of rapid and cheaper next-generation sequencing (NGS), is impacting our medical world in several ways (1). As is the case in any new area of medicine, the field is infused with "truthiness," where instead, what is needed for good patient care and scientific rigor is an effort to close in on the truth. Today, I'll discuss how variation in the human genome is being evaluated and re-evaluated as we sequence more and more of our patients' genes.
Assuntos
Aconselhamento Genético/métodos , Testes Genéticos/métodos , Variação Genética , Genoma Humano , Neoplasias/genética , Revelação da Verdade , Predisposição Genética para Doença , Hereditariedade , Humanos , Neoplasias/patologia , Neoplasias/terapia , Educação de Pacientes como Assunto , Linhagem , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Medição de Risco , Fatores de RiscoRESUMO
Deficiency of huntingtin-interacting protein 1 (Hip1) results in degenerative phenotypes. Here we generated a Hip1 deficiency allele where a floxed transcriptional stop cassette and a human HIP1 cDNA were knocked into intron 1 of the mouse Hip1 locus. CMV-Cre-mediated germ line excision of the stop cassette resulted in expression of HIP1 and rescue of the Hip1 knockout phenotype. Mx1-Cre-mediated excision led to HIP1 expression in spleen, kidney and liver, and also rescued the phenotype. In contrast, hGFAP-Cre-mediated, brain-specific HIP1 expression did not rescue the phenotype. Metabolomics and microarrays of several Hip1 knockout tissues identified low phosphocholine (PC) levels and low glycerophosphodiester phosphodiesterase domain containing 3 (Gdpd3) gene expression. Since Gdpd3 has lysophospholipase D activity that results in the formation of choline, a precursor of PC, Gdpd3 downregulation could lead to the low PC levels. To test whether Gdpd3 contributes to the Hip1 deficiency phenotype, we generated Gdpd3 knockout mice. Double knockout of Gdpd3 and Hip1 worsened the Hip1 phenotype. This suggests that Gdpd3 compensates for Hip1 loss. More-detailed knowledge of how Hip1 deficiency leads to low PC will improve our understanding of HIP1 in choline metabolism in normal and disease states.
Assuntos
Proteínas de Ligação a DNA/deficiência , Endocitose/genética , Diester Fosfórico Hidrolases/genética , Fosforilcolina/metabolismo , Animais , DNA Complementar/genética , Regulação para Baixo/genética , Expressão Gênica/genética , Humanos , Íntrons/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , FenótipoRESUMO
Importance: Variant reclassification is an important component of hereditary cancer genetic testing; however, there are few published data quantifying the prevalence of reclassification. Objective: Retrospective cohort study of individuals who had genetic testing from 2006 through 2016 at a single commercial laboratory. Design, Setting, and Participants: A retrospective cohort of individuals who had genetic testing between 2006 and 2016 at a single commercial laboratory was assessed. Variants were classified as benign, likely benign, variant of uncertain significance, likely pathogenic, or pathogenic. Retrospective chart reviews were conducted for patients from the University of Texas Southwestern (UTSW) Medical Center. Exposures: Hereditary cancer genetic testing. Main Outcomes and Measures: Frequency of and time to amended reports; frequency and types of variant reclassification. Results: From 2006 through 2018, 1.45 million individuals (median [interquartile range] age at testing, 49 years [40.69-58.31 years], 95.6% women) had genetic testing, and 56.6% (n = 821â¯724) had a personal history of cancer. A total of 1.67 million initial tests were reported and 59â¯955 amended reports were issued due to variant reclassification. Overall, 6.4% (2868 of 44â¯777) of unique variants were reclassified. Reclassification to a different clinical category was rare among unique variants initially classified as pathogenic or likely pathogenic (0.7%, 61 of 9112) or benign or likely benign (0.2%, 15 of 8995). However, 7.7% (2048 of 26â¯670) of unique variants of uncertain significance were reclassified: 91.2% (1867 of 2048) were downgraded to benign or likely benign (median time to amended report, 1.17 years), 8.7% (178 of 2048) were upgraded to pathogenic or likely pathogenic variants (median time to amended report, 1.86 years). Because most variants were observed in more than 1 individual, 24.9% (46â¯890 of 184â¯327) of all reported variants of uncertain significance were reclassified. Conclusions and Relevance: Following hereditary cancer genetic testing at a single commercial laboratory, 24.9% of variants of uncertain significance were reclassified, which included both downgrades and upgrades. Further research is needed to assess generalizability of the findings for other laboratories, as well as the clinical consequences of the reclassification as a component of a genetic testing program.
Assuntos
Predisposição Genética para Doença , Testes Genéticos , Variação Genética , Neoplasias/genética , Adulto , Feminino , Doenças Genéticas Inatas/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos RetrospectivosRESUMO
In Fig. 3c of this Letter, the the effects of CRISPR-Cas9-mediated deletion of NR3C1, TXNIP and CNR2 in patient-derived B-lineage leukaemia cells were shown. For curves depicting NR3C1 (left graph), data s for TXNIP (middle graph) were inadvertently plotted. This figure has been corrected online, and the original Fig. 3c is shown as Supplementary Information to this Amendment for transparency. The error does not affect the conclusions of the Letter. In addition, Source Data files have been added for the Figs. 1-4 and Extended Data Figs. 1-10 of the original Letter.
RESUMO
The current algorithm for Lynch syndrome diagnosis is highly complex with multiple steps which can result in an extended time to diagnosis while depleting precious tumor specimens. Here we describe the analytical validation of a custom probe-based NGS tumor panel, TumorNext-Lynch-MMR, which generates a comprehensive genetic profile of both germline and somatic mutations that can accelerate and streamline the time to diagnosis and preserve specimen. TumorNext-Lynch-MMR can detect single nucleotide variants, small insertions and deletions in 39 genes that are frequently mutated in Lynch syndrome and colorectal cancer. Moreover, the panel provides microsatellite instability status and detects loss of heterozygosity in the five Lynch genes; MSH2, MSH6, MLH1, PMS2 and EPCAM. Clinical cases are described that highlight the assays ability to differentiate between somatic and germline mutations, precisely classify variants and resolve discordant cases.
RESUMO
B-lymphoid transcription factors, such as PAX5 and IKZF1, are critical for early B-cell development, yet lesions of the genes encoding these transcription factors occur in over 80% of cases of pre-B-cell acute lymphoblastic leukaemia (ALL). The importance of these lesions in ALL has, until now, remained unclear. Here, by combining studies using chromatin immunoprecipitation with sequencing and RNA sequencing, we identify a novel B-lymphoid program for transcriptional repression of glucose and energy supply. Our metabolic analyses revealed that PAX5 and IKZF1 enforce a state of chronic energy deprivation, resulting in constitutive activation of the energy-stress sensor AMPK. Dominant-negative mutants of PAX5 and IKZF1, however, relieved this glucose and energy restriction. In a transgenic pre-B ALL mouse model, the heterozygous deletion of Pax5 increased glucose uptake and ATP levels by more than 25-fold. Reconstitution of PAX5 and IKZF1 in samples from patients with pre-B ALL restored a non-permissive state and induced energy crisis and cell death. A CRISPR/Cas9-based screen of PAX5 and IKZF1 transcriptional targets identified the products of NR3C1 (encoding the glucocorticoid receptor), TXNIP (encoding a glucose-feedback sensor) and CNR2 (encoding a cannabinoid receptor) as central effectors of B-lymphoid restriction of glucose and energy supply. Notably, transport-independent lipophilic methyl-conjugates of pyruvate and tricarboxylic acid cycle metabolites bypassed the gatekeeper function of PAX5 and IKZF1 and readily enabled leukaemic transformation. Conversely, pharmacological TXNIP and CNR2 agonists and a small-molecule AMPK inhibitor strongly synergized with glucocorticoids, identifying TXNIP, CNR2 and AMPK as potential therapeutic targets. Furthermore, our results provide a mechanistic explanation for the empirical finding that glucocorticoids are effective in the treatment of B-lymphoid but not myeloid malignancies. Thus, B-lymphoid transcription factors function as metabolic gatekeepers by limiting the amount of cellular ATP to levels that are insufficient for malignant transformation.
Assuntos
Linfócitos B/metabolismo , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Fatores de Transcrição/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Carcinogênese/genética , Proteínas de Transporte/agonistas , Proteínas de Transporte/metabolismo , Morte Celular , Imunoprecipitação da Cromatina , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Feminino , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Fator de Transcrição Ikaros/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX5/deficiência , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Pirúvico/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Receptores de Glucocorticoides/metabolismo , Análise de Sequência de RNARESUMO
BRCA1 is a well-known DNA repair pathway component and a tissue-specific tumor suppressor. However, its role in hematopoiesis is uncertain. Here, we report that a cohort of patients heterozygous for BRCA1 mutations experienced more hematopoietic toxicity from chemotherapy than those with BRCA2 mutations. To test whether this reflects a requirement for BRCA1 in hematopoiesis, we generated mice with Brca1 mutations in hematopoietic cells. Mice homozygous for a null Brca1 mutation in the embryonic hematopoietic system (Vav1-iCre;Brca1F22-24/F22-24) developed hematopoietic defects in early adulthood that included reduced hematopoietic stem cells (HSCs). Although mice homozygous for a huBRCA1 knockin allele (Brca1BRCA1/BRCA1) were normal, mice with a mutant huBRCA1/5382insC allele and a null allele (Mx1-Cre;Brca1F22-24/5382insC) had severe hematopoietic defects marked by a complete loss of hematopoietic stem and progenitor cells. Our data show that Brca1 is necessary for HSC maintenance and normal hematopoiesis and that distinct mutations lead to different degrees of hematopoietic dysfunction.
Assuntos
Proteína BRCA1/genética , Células-Tronco Hematopoéticas/metabolismo , Adulto , Idoso , Alelos , Animais , Proteína BRCA1/deficiência , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Contagem de Células Sanguíneas , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Ciclofosfamida/farmacologia , Feminino , Técnicas de Introdução de Genes , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Hemoglobinas/análise , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutagênese , Pancitopenia/etiologia , Pancitopenia/mortalidade , Pancitopenia/patologia , Adulto JovemRESUMO
This study explores the potential impact of the genetic counseling assistant (GCA) position on the efficiency of the genetic counseling field, evaluates attitudes regarding expansion of the genetic counseling field to include the GCA, and presents data on GCA endeavors and GCA job tasks as reported by GCAs, certified genetic counselors (CGCs), and program directors (PDs). Data on GCA roles and attitudes toward different aspects of the GCA position were collected via surveys of CGCs who have worked with GCAs, PDs who have and have not had experience with GCAs in their programs, and GCAs. We analyzed responses from 63 individuals: 27 PDs, 22 CGCs, and 14 GCAs. GCAs' impact on efficiency was calculated via internal analysis of genetic patient volume per genetic counselor within the University of Texas Southwestern (UTSW) patient database prior to, and since the addition of, a GCA to the practice. The response rates for PDs, CGCs, and GCAs were 27 %, 79 %, and 61 %, respectively. Every CGC stated the GCA increased their efficiency. CGCs with a GCA reported a 60 % average increase in patient volume. This figure was congruent with internal data from the UTSW cancer genetics program (58.5 % increase). Appropriate responsibilities for GCAs as reported by CGCs and PDs (>90 %) include: data entry, shipping tests, administrative tasks, research, and ordering supplies. Regarding GCAs delivering test results, there was response variation whether this should be a job duty: 42 % of CGCs agreed to GCAs delivering negative results to patients, compared to 22 % of program directors. Twenty-two percent of PDs expressed concern about the job title "Genetic Counseling Assistant." Ninety percent of CGCs felt that GCA was a career path to becoming a CGC, compared to 42 % of PDs. Eighty-three percent of GCAs who decided to apply to CGC graduate programs were accepted. We conclude the addition of a GCA to a genetic counseling practice contributes to increased efficiency and is one way to expand the reach of the profession.
Assuntos
Pessoal Técnico de Saúde/organização & administração , Atitude do Pessoal de Saúde , Atenção à Saúde/organização & administração , Aconselhamento Genético/organização & administração , Adulto , Humanos , Recursos HumanosRESUMO
Despite the potential of whole-genome sequencing (WGS) to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176) and those without (n = 82). Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency < 1% in ESP6500) in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS). Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF) variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks.
RESUMO
Both BRCA1 and Beclin 1 (BECN1) are tumor suppressor genes, which are in close proximity on the human chromosome 17q21 breast cancer tumor susceptibility locus and are often concurrently deleted. However, their importance in sporadic human breast cancer is not known. To interrogate the effects of BECN1 and BRCA1 in breast cancer, we studied their mRNA expression patterns in breast cancer patients from two large datasets: The Cancer Genome Atlas (TCGA) (n=1067) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (n=1992). In both datasets, low expression of BECN1 was more common in HER2-enriched and basal-like (mostly triple-negative) breast cancers compared to luminal A/B intrinsic tumor subtypes, and was also strongly associated with TP53 mutations and advanced tumor grade. In contrast, there was no significant association between low BRCA1 expression and HER2-enriched or basal-like subtypes, TP53 mutations or tumor grade. In addition, low expression of BECN1 (but not low BRCA1) was associated with poor prognosis, and BECN1 (but not BRCA1) expression was an independent predictor of survival. These findings suggest that decreased mRNA expression of the autophagy gene BECN1 may contribute to the pathogenesis and progression of HER2-enriched, basal-like, and TP53 mutant breast cancers.
RESUMO
When a doctor orders a genetic test, patients assume that the test will yield a useful result to guide how their physicians take care of them. That assumption is frequently correct, but not always. Until recently, a genetic test only interrogated the sequence of one or two genes. Now, DNA-sequencing technologies are so fast and cheap that they have enabled clinicians to sequence panels of genes that may or may not be relevant to the patient's condition. The technology has outpaced our ability to interpret the results. Connecting approval of clinical tests to data sharing could help close this gap.
RESUMO
BACKGROUND: The US Preventative Service Task Force recommends that physicians perform a genetic risk assessment to identify women at risk for BRCA1/2 mutations associated with hereditary breast and ovarian cancer (HBOC) syndrome. However, outcomes data after a diagnosis of HBOC syndrome especially in diverse populations, are minimal. Here we asked if genetic screening of high-risk underserved women identified in the mammogram population reduces cancer incidence. METHODS: We evaluated 61,924 underserved women at screening mammography for family histories suggestive of HBOC syndrome over the course of 21 months. Data were collected retrospectively from patients at two safety net hospitals through chart review. A computer model was used to calculate the long-term effect of this screening on cancer incidence by assessing both the mutation detection rate and the completion of prophylactic surgeries in BRCA1/2 mutation carriers. FINDINGS: We identified 20 of the 85 (23.5%) expected BRCA1/2 mutation carriers in the underserved population. The frequencies of prophylactic mastectomies and oophorectomies in the mutation carriers were 25% and 40%, respectively. Using these data, our model predicted only an 8.8% reduction in both breast and ovarian cancer in the underserved patients. This contrasts with a 57% reduction in breast cancer and 51% reduction in ovarian cancer in an insured reference population. Our data indicate that underserved patients with HBOC syndrome are difficult to identify and when identified are limited in their ability to adhere to NCCN guidelines for cancer prevention. INTERPRETATION: Screening for women at risk for HBOC syndrome in mammogram populations will only prevent cancers if we can increase compliance with management guidelines. This study provides prototypic baseline data for step-wise analysis of the efficacy of the use of family history analysis in the mammography setting for detection and management of HBOC syndrome.