Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Sci ; 311: 110994, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482907

RESUMO

Drought is a pivotal cause for crop yield reductions. When subjected to recurrent external stimuli, plants can develop memory of stress responses that, eventually, enables improved plant tolerance to environmental changes. In addition, despite causal relationships, these responses may vary according to hierarchical levels of observation. Thus, this study aims to check the responses of recurrent and non-recurrent stresses in two rice genotypes observing their drought memory responses at different levels of organization, that is, on a physiological, biochemical and metabolomic scale and for end in global PCA. For this, seventy variables were measured on the scales described in order to obtain a large number of observations. The memory responses were evident in almost all scales observed. The lowland genotype, especially plants not subjected to recurrent water shortage, showed higher damage to the photosynthetic apparatus under drought conditions, although it has exhibited more evident memory response effect after rehydration. On the other hand, the upland genotype appears to be more tolerant to drought insofar lower biochemical damage was observed. Specific behaviors of each genotype at biochemical and metabolomics levels and similar behavior at physiological level were observed. This study demonstrates the importance of observation at different hierarchical levels.


Assuntos
Adaptação Fisiológica/genética , Desidratação/genética , Desidratação/fisiopatologia , Secas , Oryza/genética , Oryza/fisiologia , Água/metabolismo , Brasil , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Estresse Fisiológico/genética
2.
Physiol Plant ; 172(2): 304-316, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32421869

RESUMO

Drought is the main constrain for crops worldwide, however, the effects of recurrent water deficit remain still hidden. We analysed two rice genotypes, 'BRS-Querência' (lowlands) and 'AN-Cambará' (uplands), after 7 days of recurrent drought followed by 24 h of rehydration, hypothesising that genotypes grown in regions with different water availabilities respond differently to water deficits, and that a previous exposure to stress could alter abscisic acid (ABA) metabolism. The results showed that both genotypes reduced stomatal conductance and increased ABA concentration. After rehydration, the ABA levels decreased, mainly in the plants of BRS-Querência subjected to recurrent stress. However, the levels of ABA were higher in plants in recurrent water deficit compared to non-recurrent stress plants in both genotypes. Remarkably in the lowland genotype, the ABA glucosyl-ester (ABA-GE) concentration increased after recovery in the plants under recurrent stress. Regarding of gene expression, the genes associated in ABA biosynthesis with the highest expression levels were NCED2, NCED3, NCED4 and AAO2. However, 'AN-Cambará' showed less transcriptional activation. Taking into account the genes involved in ABA catabolism, ABAH1 appears to play an important role related to the recurrent stress in upland plants. These results indicate that one of the factors that can promote greater tolerance for the upland genotype is the tradeoff between ABA and ABA-GE when plants are subjected to water deficits. In addition, they indicate that abscisic acid metabolism is altered due to the genotype (upland or lowland) and pre-exposure to stress can also modify adaptive responses in rice varieties (recurrent stress).


Assuntos
Ácido Abscísico , Oryza , Secas , Regulação da Expressão Gênica de Plantas , Genótipo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Água/metabolismo
3.
Planta ; 251(6): 111, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32474838

RESUMO

MAIN CONCLUSION: A first salt shock event alters transcriptional and physiological responses to a second event, being possible to identify 26 genes associated with long-term memory. Soil salinity significantly affects rice cultivation, resulting in large losses in growth and productivity. Studies report that a disturbing event can prepare the plant for a subsequent event through memory acquisition, involving physiological and molecular processes. Therefore, genes that provide altered responses in subsequent events define a category known as "memory genes". In this work, the RNA-sequencing (RNA-Seq) technique was used to analyse the transcriptional profile of rice plants subjected to different salt shock events and to characterise genes associated with long-term memory. Plants subjected to recurrent salt shock showed differences in stomatal conductance, chlorophyll index, electrolyte leakage, and the number of differentially expressed genes (DEGs), and they had lower Na+/K+ ratios than plants that experienced only one stress event. Additionally, the mammalian target of rapamycin (mTOR) pathways, and carbohydrate and amino acid-associated pathways were altered under all conditions. Memory genes can be classified according to their responses during the first event (+ or -) and the second shock event (+ or -), being possible to observe a larger number of transcripts for groups [+ /-] and [-/ +], genes characterised as "revised response." This is the first long-term transcriptional memory study in rice plants under salt shock, providing new insights into the process of plant memory acquisition.


Assuntos
Oryza/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Perfilação da Expressão Gênica , Oryza/genética , Salinidade , Análise de Sequência de RNA , Fatores de Tempo
4.
Physiol Plant ; 170(2): 248-268, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32515828

RESUMO

Plants are constantly exposed to environmental fluctuations, that may occur in a single day or over longer periods. In many cases, abiotic stresses are transient and recurrent, impacting how plants respond in subsequent adverse conditions. Adaptation mechanisms may occur at the physiological, biochemical and molecular level, modifying transcriptional response, regulatory proteins, epigenetic marks or metabolites. Here, we aimed to uncover the different strategies that rice uses to respond to recurrent stress. We tested varieties with contrasting behavior towards salinity (tolerance or sensitivity) and imposed salt stress (150 mM NaCl) during 48 h at vegetative and/or reproductive stages. After 48 h of stress in reproductive stage, leaves and roots were harvested separately or otherwise the plants were submitted to a 24 h recovery, prior to sample harvesting. Plants submitted to a recurrent stress responded differently from those suffering a single stress event. In the case of the sensitive genotype, recurrent stress led to lower Na/K ratio in roots and lower hydrogen peroxide accumulation and lipid peroxidation in leaves, but maintenance of global DNA methylation levels. In the tolerant genotype, recurrent stress did neither affect the Na/K ratio nor the stomatal conductance, although the levels of superoxide anion and hydrogen peroxide accumulation were lower, as also observed for global levels of DNA methylation. Our work shows that a short pre-exposure to salt stress may improve rice tolerance to subsequent stress, trough biochemical, physiological and epigenetic processes, with more significant changes visible in the tolerant genotype.


Assuntos
Oryza/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genótipo , Salinidade , Estresse Fisiológico
5.
Physiol Mol Biol Plants ; 23(4): 865-875, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29158635

RESUMO

The rice cultivar (Oryza sativa L.) BRS AG, developed by Embrapa Clima Temperado, is the first cultivar designed for purposes other than human consumption. It may be used in ethanol production and animal feed. Different abiotic stresses negatively affect plant growth. Soil salinity is responsible for a serious reduction in productivity. Therefore, the objective of this study was to evaluate the gene expression and the activity of antioxidant enzymes (SOD, CAT, APX and GR) and identify their functions in controlling ROS levels in rice plants, cultivar BRS AG, after a saline stress period. The plants were grown in vitro with two NaCl concentrations (0 and 136 mM), collected at 10, 15 and 20 days of cultivation. The results indicated that the activity of the enzymes evaluated promotes protection against oxidative stress. Although, there was an increase of reactive oxygen species, there was no increase in MDA levels. Regarding genes encoding isoforms of antioxidant enzymes, it was observed that OsSOD3-CU/Zn, OsSOD2-Cu/Zn, OsSOD-Cu/Zn, OsSOD4-Cu/Zn, OsSODCc1-Cu/Zn, OsSOD-Fe, OsAPX1, OsCATB and OsGR2 were the most responsive. The increase in the transcription of all genes among evaluated isoforms, except for OsAPX6, which remained stable, contributed to the increase or the maintenance of enzyme activity. Thus, it is possible to infer that the cv. BRS AG has defense mechanisms against salt stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA