Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 15(8): e0153624, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39037288

RESUMO

Despite the importance of intra-species variants of viruses for causing disease and/or disrupting ecosystem functioning, there is no universally applicable standard to define these. A (natural) gap in whole-genome average nucleotide identity (ANI) values around 95% is commonly used to define species, especially for bacteriophages, but whether a similar gap exists within species that can be used to define intra-species units has not been evaluated yet. Whole-genome comparisons among members of 1,016 bacteriophage (Caudoviricetes) species revealed a region of low frequency of ANI values around 99.2%-99.8%, showing threefold or fewer pairs than expected for an even distribution. This second gap is prevalent in viruses infecting various cultured or uncultured hosts from a variety of environments, although a few exceptions to this pattern were also observed (3.7% of total species) and are likely attributed to cultivation biases or other factors. Similar results were observed for a limited set of eukaryotic viruses that are adequately sampled, including SARS-CoV-2, whose ANI-based clusters matched well with the WHO-defined variants of concern, indicating that our findings from bacteriophages might be more broadly applicable and the ANI-based clusters may represent functionally and/or ecologically distinct units. These units appear to be predominantly driven by (high) ecological cohesiveness coupled to either frequent recombination for bacteriophages or selection and clonal evolution for other viruses such as SARS-CoV-2, indicating that fundamentally different underlying mechanisms could lead to similar diversity patterns. Accordingly, we propose the ANI gap approach outlined above for defining viral intra-species units, for which we propose the term genomovars. IMPORTANCE: Viral species are composed of an ensemble of intra-species variants whose individual dynamics may have major implications for human and animal health and/or ecosystem functioning. However, the lack of universally accepted standards to define these intra-species variants has led researchers to use different approaches for this task, creating inconsistent intra-species units across different viral families and confusion in communication. By comparing hundreds of mostly bacteriophage genomes, we show that there is a widely distributed natural gap in whole-genome average nucleotide identity values in most, but not all, of these species that can be used to define intra-species units. Therefore, these results advance the molecular toolbox for tracking viral intra-species units and should facilitate future epidemiological and environmental studies.


Assuntos
Bacteriófagos , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Filogenia , SARS-CoV-2/genética , SARS-CoV-2/classificação , Humanos , Vírus/genética , Vírus/classificação , Variação Genética
2.
Natl Sci Rev ; 11(7): nwae168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39071100

RESUMO

Prokaryotes are ubiquitous in the biosphere, important for human health and drive diverse biological and environmental processes. Systematics of prokaryotes, whose origins can be traced to the discovery of microorganisms in the 17th century, has transitioned from a phenotype-based classification to a more comprehensive polyphasic taxonomy and eventually to the current genome-based taxonomic approach. This transition aligns with a foundational shift from studies focused on phenotypic traits that have limited comparative value to those using genome sequences. In this context, Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB) and Bergey's International Society for Microbial Systematics (BISMiS) play a pivotal role in guiding prokaryotic systematics. This review focuses on the historical development of prokaryotic systematics with a focus on the roles of BMSAB and BISMiS. We also explore significant contributions and achievements by microbiologists, highlight the latest progress in the field and anticipate challenges and opportunities within prokaryotic systematics. Additionally, we outline five focal points of BISMiS that are aimed at addressing these challenges. In conclusion, our collaborative effort seeks to enhance ongoing advancements in prokaryotic systematics, ensuring its continued relevance and innovative characters in the contemporary landscape of genomics and bioinformatics.

3.
mSystems ; 9(7): e0053824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38934645

RESUMO

Hypersaline ecosystems display taxonomically similar assemblages with low diversities and highly dense accompanying viromes. The ecological implications of viral infection on natural microbial populations remain poorly understood, especially at finer scales of diversity. Here, we sought to investigate the influence of changes in environmental physicochemical conditions and viral predation pressure by autochthonous and allochthonous viruses on host dynamics. For this purpose, we transplanted two microbiomes coming from distant hypersaline systems (solar salterns of Es Trenc in Spain and the thalassohaline lake of Aran-Bidgol lake in Iran), by exchanging the cellular fractions with the sterile-filtered accompanying brines with and without the free extracellular virus fraction. The midterm exposure (1 month) of the microbiomes to the new conditions showed that at the supraspecific taxonomic range, the assemblies from the solar saltern brine more strongly resisted the environmental changes and viral predation than that of the lake. The metagenome-assembled genomes (MAGs) analysis revealed an intraspecific transition at the ecotype level, mainly driven by changes in viral predation pressure, by both autochthonous and allochthonous viruses. IMPORTANCE: Viruses greatly influence succession and diversification of their hosts, yet the effects of viral infection on the ecological dynamics of natural microbial populations remain poorly understood, especially at finer scales of diversity. By manipulating the viral predation pressure by autochthonous and allochthonous viruses, we uncovered potential phage-host interaction, and their important role in structuring the prokaryote community at an ecotype level.


Assuntos
Lagos , Microbiota , Lagos/microbiologia , Lagos/virologia , Espanha , Humanos , Sais/química , Salinidade , Irã (Geográfico) , Metagenoma , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação
4.
Syst Appl Microbiol ; 47(2-3): 126506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640749

RESUMO

Groundwater offers an intriguing blend of distinctive physical and chemical conditions, constituting a challenge for microbial life. In Mallorca, the largest island of Balearic archipelago, harbours a variety of thermal anomalies (i.e., geothermal manifestation where surface aquifers exhibiting temperatures exceeding the regional average). The metagenomes of two aquifers in the centre and southern of the island showed Pseudomonadota to be the most represented phylum when using extracted 16S rRNA gene sequences. However, the microbial structures within and between aquifers were remarkably diverse but similar in their metabolic profiles as revealed by the metagenome-assembled genomes (MAGs) pointing to a prevalence of aerobic chemolithoautotrophic and heterotrophic metabolisms, especially in the Llucmajor aquifer. Also, some evidences of anaerobic lifestyles were detected, which would indicate that these environments either could suffer episodes of oxygen depletion or the anaerobes had been transported from deeper waters. We believe that the local environmental factors (temperature, external inputs or chemistry) seem to be more relevant than the connection and, eventually, transport of microbial cells within the aquifer in determining the highly divergent structures. Notably, most of the reconstructed genomes belonged to undescribed bacterial lineages and from them two high-quality MAGs could be classified as novel taxa named following the rules of the Code for Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). Accordingly, we propose the new species and genus Costitxia debesea gen. nov., sp. nov., affiliated with the novel family Costitxiaceae fam. nov., order Costitxiales ord. nov. and class Costitxiia class. nov.; and the new new species and genus Lloretia debesea gen. nov. sp. nov. affiliated with the novel family Lloretiaceae fam. nov.


Assuntos
Bactérias , Água Subterrânea , Metagenômica , Filogenia , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , Água Subterrânea/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Ilhas , Análise de Sequência de DNA , Espanha , Metagenoma , Genoma Bacteriano/genética , Temperatura
5.
Nat Commun ; 15(1): 544, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228587

RESUMO

What a strain is and how many strains make up a natural bacterial population remain elusive concepts despite their apparent importance for assessing the role of intra-population diversity in disease emergence or response to environmental perturbations. To advance these concepts, we sequenced 138 randomly selected Salinibacter ruber isolates from two solar salterns and assessed these genomes against companion short-read metagenomes from the same samples. The distribution of genome-aggregate average nucleotide identity (ANI) values among these isolates revealed a bimodal distribution, with four-fold lower occurrence of values between 99.2% and 99.8% relative to ANI >99.8% or <99.2%, revealing a natural "gap" in the sequence space within species. Accordingly, we used this ANI gap to define genomovars and a higher ANI value of >99.99% and shared gene-content >99.0% to define strains. Using these thresholds and extrapolating from how many metagenomic reads each genomovar uniquely recruited, we estimated that -although our 138 isolates represented about 80% of the Sal. ruber population- the total population in one saltern pond is composed of 5,500 to 11,000 genomovars, the great majority of which appear to be rare in-situ. These data also revealed that the most frequently recovered isolate in lab media was often not the most abundant genomovar in-situ, suggesting that cultivation biases are significant, even in cases that cultivation procedures are thought to be robust. The methodology and ANI thresholds outlined here should represent a useful guide for future microdiversity surveys of additional microbial species.


Assuntos
Bactérias , Bacteroidetes , Bactérias/genética , Bacteroidetes/genética , Metagenômica/métodos , Metagenoma/genética , Filogenia , Genoma Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA