Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med ; 95: 1-8, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051680

RESUMO

Independent dose verification with Monte Carlo (MC) simulations is an important feature of proton therapy quality assurance (QA). However, clinical integration of such tools often generates an additional and complex workload for medical physicists. The preparation of the necessary clinical inputs, such as the machine beam model, should therefore be automated. In this work, a methodology for automatic MC commissioning has been devised, validated, and developed into a MATLAB tool for the users of myQA iON, the recent QA platform of IBA Dosimetry. With this workflow, all necessary parameters can easily be tuned using dedicated optimization methods. For the geometrical beam parameters (phase space), the assumption of a single or double Gaussian is made. To model the energy spectrum, a Gaussian function is assumed and parameters are optimized using either MC simulations or a library of pre-computed Bragg peaks. For the absolute dose calibration, commissioning fields can be reproduced with the dose engine to retrieve the necessary parameters. We discuss in a first time the tool efficiency and show that one can optimize all parameters in less than 4 min per energy with excellent accuracy. We then validate a beam model obtained with the tool by simulating homogeneous spread-out Bragg peaks (SOBPs) and patient QA plans previously measured in water. An average range agreement of 0.29 ± 0.34 mm is achieved for the SOBPs while 3%/3 mm local gamma passing rates reach 99.3% on average over all 62 measured patient QA planes, which is well within clinical tolerances.


Assuntos
Método de Monte Carlo , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Humanos , Terapia com Prótons/métodos , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
2.
Phys Med Biol ; 65(4): 045015, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31365915

RESUMO

A new practical method to determine the ion recombination correction factor (k s ) for plane-parallel and Farmer-type cylindrical chambers in particle beams is investigated. Experimental data were acquired in passively scattered and scanned particle beams and compared with theoretical models developed by Boag and/or Jaffé. The new method, named the three-voltage linear method (3VL-method), is simple and consists of determining the saturation current using the current measured at three voltages in a linear region and dividing it by the current at the operating voltage (V) (even if it is not in the linear region) to obtain k s . For plane-parallel chambers, comparing k s -values obtained by model fits to values obtained using the 3VL-method, an excellent agreement is found. For cylindrical chambers, recombination is due to volume recombination only. At low voltages, volume recombination is too large and Boag's models are not applicable. However, for Farmer-type chambers (NE2571), using a smaller voltage range, limited down to 100 V, we observe a linear variation of k s with 1/V 2 or 1/V for continuous or pulsed beams, respectively. This linearity trend allows applying the 3VL-method to determine k s at any polarizing voltage. For the particle beams used, the 3VL-method gives an accurate determination of k s at any polarizing voltage. The choice of the three voltages must to be done with care to ensure to be in a linear region. For Roos-type or Markus-type chambers (i.e. chambers with an electrode spacing of 2 mm) and NE2571 chambers, the use of the 3VL-method with 300 V, 200 V and 150 V is adequate. A difference with the 2V-method and some 3V-methods in the literature is that in the 3VL-method the operational voltage does not have to be one of the three voltages. An advantage over a 2V-method is that the 3VL-method can inherently verify if the linearity condition is fulfilled.


Assuntos
Luz , Prótons , Radiometria/instrumentação , Modelos Lineares , Espalhamento de Radiação
3.
Phys Med Biol ; 62(13): 5365-5382, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28504642

RESUMO

Based on international reference dosimetry protocols for light-ion beams, a correction factor (k s) has to be applied to the response of a plane-parallel ionisation chamber, to account for recombination of negative and positive charges in its air cavity before these charges can be collected on the electrodes. In this work, k s for IBA PPC40 Roos-type chambers is investigated in four scanned light-ion beams (proton, helium, carbon and oxygen). To take into account the high dose-rates used with scanned beams and LET-values, experimental results are compared to a model combining two theories. One theory, developed by Jaffé, describes the variation of k s with the ionization density within the ion track (initial recombination) and the other theory, developed by Boag, describes the variation of k s with the dose rate (volume recombination). Excellent agreement is found between experimental and theoretical k s-values. All results confirm that k s cannot be neglected. The solution to minimise k s is to use the ionisation chamber at high voltage. However, one must be aware that charge multiplication may complicate the interpretation of the measurement. For the chamber tested, it was found that a voltage of 300 V can be used without further complication. As the initial recombination has a logarithmic variation as a function of 1/V, the two-voltage method is not applicable to these scanned beams.


Assuntos
Doses de Radiação , Radiometria/instrumentação , Transferência Linear de Energia
4.
Phys Med Biol ; 62(7): N134-N146, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28211796

RESUMO

The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, [Formula: see text], needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a field size of 11 × 11 cm2, without modulation. In order to sample the beam, a plane-parallel Roos ionization chamber was chosen for its small collecting volume in comparison with the field size. Experimental information on fluence corrections was obtained from depth-dose measurements in water. This procedure was repeated with graphite plates in front of the water phantom. Fluence corrections were also obtained with Monte Carlo simulations through the implementation of three methods based on (i) the fluence distributions differential in energy, (ii) a ratio of calculated doses in water and graphite at equivalent depths and (iii) simulations of the experimental setup. The [Formula: see text] term increased in depth from 1.00 at the entrance toward 1.02 at a depth near the Bragg peak, and the average difference between experimental and numerical simulations was about 0.13%. Compared to proton beams, there was no reduction of the [Formula: see text] due to alpha particles because the secondary particle spectrum is dominated by projectile fragmentation. By developing a practical dose conversion technique, this work contributes to improving the determination of absolute dose to water from graphite calorimetry in carbon-ion beams.


Assuntos
Calorimetria/métodos , Grafite/química , Radioterapia com Íons Pesados/instrumentação , Radioterapia com Íons Pesados/métodos , Imagens de Fantasmas , Algoritmos , Simulação por Computador , Humanos , Método de Monte Carlo , Radiometria/métodos , Água/química
5.
Phys Med Biol ; 61(18): 6602-6619, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27541137

RESUMO

In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.


Assuntos
Calorimetria/métodos , Ciclotrons/instrumentação , Elétrons , Prótons , Radiometria/instrumentação , Água/química , Calibragem , Radiometria/métodos , Condutividade Térmica
6.
Phys Med ; 32(9): 1135-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27567088

RESUMO

This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam.


Assuntos
Radiometria/métodos , Algoritmos , Calibragem , Carbono/química , Diamante , Desenho de Equipamento , Íons , Transferência Linear de Energia , Prótons , Radiometria/instrumentação , Reprodutibilidade dos Testes
7.
Med Phys ; 43(7): 4198, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27370139

RESUMO

PURPOSE: In this work, ion recombination is studied as a function of energy and depth in carbon ion beams. METHODS: Measurements were performed in three different passively scattered carbon ion beams with energies of 62 MeV/n, 135 MeV/n, and 290 MeV/n using various types of plane-parallel ionization chambers. Experimental results were compared with two analytical models for initial recombination. One model is generally used for photon beams and the other model, developed by Jaffé, takes into account the ionization density along the ion track. An investigation was carried out to ascertain the effect on the ion recombination correction with varying ionization chamber orientation with respect to the direction of the ion tracks. The variation of the ion recombination correction factors as a function of depth was studied for a Markus ionization chamber in the 62 MeV/n nonmodulated carbon ion beam. This variation can be related to the depth distribution of linear energy transfer. RESULTS: Results show that the theory for photon beams is not applicable to carbon ion beams. On the other hand, by optimizing the value of the ionization density and the initial mean-square radius, good agreement is found between Jaffé's theory and the experimental results. As predicted by Jaffé's theory, the results confirm that ion recombination corrections strongly decrease with an increasing angle between the ion tracks and the electric field lines. For the Markus ionization chamber, the variation of the ion recombination correction factor with depth was modeled adequately by a sigmoid function, which is approximately constant in the plateau and strongly increasing in the Bragg peak region to values of up to 1.06. Except in the distal edge region, all experimental results are accurately described by Jaffé's theory. CONCLUSIONS: Experimental results confirm that ion recombination in the investigated carbon ion beams is dominated by initial recombination. Ion recombination corrections are found to be significant and cannot be neglected for reference dosimetry and for the determination of depth dose curves in carbon ion beams.


Assuntos
Carbono/uso terapêutico , Íons/uso terapêutico , Radioterapia/métodos , Algoritmos , Simulação por Computador , Ciclotrons , Modelos Teóricos , Método de Monte Carlo , Radioterapia/instrumentação , Síncrotrons
8.
Phys Med Biol ; 61(12): 4551-63, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27224547

RESUMO

To investigate the linear energy transfer (LET) dependence of the response of a PTW-60019 Freiburg microDiamond detector, its response was compared to the response of a plane-parallel Markus chamber in a 62 MeV/n mono-energetic carbon ion beam. Results obtained with two different experimental setups are in agreement. As recommended by IAEA TRS-398, the response of the Markus chamber was corrected for temperature, pressure, polarity effects and ion recombination. No correction was applied to the response of the microDiamond detector. The ratio of the response of the Markus chamber to the response of the microDiamond is close to unity in the plateau region. In the Bragg peak region, a significant increase of the ratio is observed, which increases to 1.2 in the distal edge region. Results indicate a correlation between the under-response of the microDiamond detector and high LET values. The combined relative standard uncertainty of the results is estimated to be 2.38% in the plateau region and 12% in the distal edge region. These values are dominated by the uncertainty of alignment in the non-uniform beam and the uncertainty of range determination.


Assuntos
Radioterapia com Íons Pesados/métodos , Transferência Linear de Energia , Dosímetros de Radiação/normas , Carbono/química , Radioterapia com Íons Pesados/normas , Radiometria/métodos , Padrões de Referência
9.
Radiat Prot Dosimetry ; 161(1-4): 92-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24336190

RESUMO

Developments in hadron therapy require efforts to improve the accuracy of the dose delivered to a target volume. Here, the determination of the absorbed dose under reference conditions was analysed. Based on the International Atomic Energy Agency TRS-398 code of practice, for hadron beams, the combined standard uncertainty on absorbed dose to water under reference conditions, derived from ionisation chambers, is too large. This uncertainty is dominated by the beam quality correction factors, [Formula: see text], mainly due to the mean energy to produce one ion pair in air, wair. A method to reduce this uncertainty is to carry out primary dosimetry, using calorimetry. A [Formula: see text]-value can be derived from a direct comparison between calorimetry and ionometry. Here, this comparison is performed using a graphite calorimeter in an 80-MeV A(-1) carbon ion beam. Assuming recommended TRS-398 values of water-to-graphite stopping power ratio and the perturbation factor for an ionisation chamber, preliminary results indicate a wair-value of 35.5 ± 0.9 J C(-1).


Assuntos
Calorimetria/métodos , Grafite/química , Radiometria/métodos , Ar , Calibragem , Carbono , Temperatura Alta , Humanos , Íons , Método de Monte Carlo , Radiometria/instrumentação , Dosagem Radioterapêutica , Valores de Referência , Reprodutibilidade dos Testes , Água/química
10.
Phys Med Biol ; 58(16): 5363-80, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23877166

RESUMO

Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media. The paper focuses on the experimental and numerical determination of this fluence correction factor for an 80 MeV/A carbon ion beam. Measurements have been performed in the nuclear physics laboratory INFN-LNS in Catania (Sicily, Italy). The numerical simulations have been made with a Geant4 Monte Carlo code through the GATE simulation platform. The experimental data are in good agreement with the simulated results for the fluence correction factors and are found to be close to unity. The experimental values increase with depth reaching 1.010 before the Bragg peak region. They have been determined with an uncertainty of 0.25%. Different numerical results are obtained depending on the level of approximation made in calculating the fluence correction factors. When considering carbon ions only, the difference between measured and calculated values is maximal just before the Bragg peak, but its value is less than 1.005. The numerical value is close to unity at the surface and increases to 1.005 near the Bragg peak. When the fluence of all charged particles is considered, the fluence correction factors are lower than unity at the surface and increase with depth up to 1.025 before the Bragg peak. Besides carbon ions, secondary particles created due to nuclear interactions have to be included in the analysis: boron ions ((10)B and (11)B), beryllium ions ((7)Be), alpha particles and protons. At the conclusion of this work, we have the conversion of dose-to-graphite to dose-to-water to apply to the response of a graphite calorimeter in an 80 MeV/A carbon ion beam. This conversion consists of the product of two contributions: the water-to-graphite electronic mass collision stopping power ratio, which is equal to 1.115, and the fluence correction factor which varies linearly with depth, as k(fl, all) = 0.9995 + 0.0048(zw-eq). The latter has been determined on the basis of experiments and numerical simulations.


Assuntos
Grafite , Radioterapia com Íons Pesados , Doses de Radiação , Radiometria/métodos , Água , Imagens de Fantasmas
11.
Phys Med Biol ; 58(10): 3481-99, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23629423

RESUMO

The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence correction factor is almost solely influenced by non-elastic nuclear interactions the results are also relevant for plastic phantoms that consist of carbon, oxygen and hydrogen atoms as well as for soft tissues.


Assuntos
Calorimetria , Grafite , Método de Monte Carlo , Fenômenos Físicos , Prótons , Imagens de Fantasmas , Água
12.
Phys Med ; 29(6): 599-606, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23107430

RESUMO

PURPOSE: To evaluate the uncertainties and characteristics of radiochromic film-based dosimetry system using the EBT3 model Gafchromic(®) film in therapy photon, electron and proton beams. MATERIAL AND METHODS: EBT3 films were read using an EPSON Expression 10000XL/PRO scanner. They were irradiated in five beams, an Elekta SL25 6 MV and 18 MV photon beam, an IBA 100 MeV 5 × 5 cm(2) proton beam delivered by pencil-beam scanning, a 60 MeV fixed proton beam and an Elekta SL25 6 MeV electron beam. Reference dosimetry was performed using a FC65-G chamber (Elekta beam), a PPC05 (IBA beam) and both Markus 1916 and PPC40 Roos ion-chambers (60 MeV proton beam). Calibration curves of the radiochromic film dosimetry system were acquired and compared within a dose range of 0.4-10 Gy. An uncertainty budget was estimated on films irradiated by Elekta SL25 by measuring intra-film and inter-film reproducibility and uniformity; scanner uniformity and reproducibility; room light and film reading delay influences. RESULTS: The global uncertainty on acquired optical densities was within 0.55% and could be reduced to 0.1% by placing films consistently at the center of the scanner. For all beam types, the calibration curves are within uncertainties of measured dose and optical densities. The total uncertainties on calibration curve due to film reading and fitting were within 1.5% for photon and proton beams. For electrons, the uncertainty was within 2% for dose superior to 0.8 Gy. CONCLUSIONS: The low combined uncertainty observed and low beam and energy-dependence make EBT3 suitable for dosimetry in various applications.


Assuntos
Elétrons/uso terapêutico , Dosimetria Fotográfica/métodos , Fótons/uso terapêutico , Terapia com Prótons , Calibragem , Cor , Estatística como Assunto , Incerteza
13.
Med Phys ; 39(6Part11): 3730, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28517130

RESUMO

PURPOSE: To measure the calibration curves of EBT3 dosimetry films in photon and proton beams and to quantify the related uncertainties from one beam type to another. METHODS: EBT3 Gafchromic films have similar properties than EBT2 with a symmetric construction and a matte polyester substrate to prevent Newton's ring artefacts. Films from a same batch were exposed in three different beam qualities, an Elekta SL25 6 MV photon beam, a 100 MeV 5×5cm2 proton beam delivered by pencil-beam scanning dedicated system from IBA and a 60 MeV fixed proton beam (2.5cm in diameter) at Clatterbridge Center for Oncology (CCO), UK. The films were read using an EPSON 10000 XL/PRO scanner. Film calibration curves were acquired for all modalities within a range of 0.05 to 20 Gy. Influence of increasing linear-energy transfer (LET) on film response was investigated by comparing dose measured by EBT3 to a silicon diode detector in depth for a fully-modulated beam using the CCO beam line (homogeneous dose with distal end at 3.1cm in water). A comprehensive uncertainty budget (reproducibility, uniformity'¦) was estimated on films irradiated by Elekta SL25. RESULTS: The main source of uncertainty was the non-uniformity of the scanner response. By placing all the irradiated films at the center of the scanner, the uncertainty could be reduced from 5.8% to 1.9% (1 sigma). For all beams and energies, the calibration curves were matched within uncertainties. Along the fully-modulated depth dose curve, diode and EBT3 measurement were in a 4% agreement point-to-point, indicating films weak dependence with LET. CONCLUSIONS: The weak influence of LET, beam type and energy on film response as well as its small uncertainty make EBT3 suitable for relative dosimetry and a promising candidate for measuring correction factors (quality, recombination,'¦) for reference dosimetry with ion chambers of non-standard beams (e.g pencil-beam scanning proton-therapy). â€Å“This work is supported by the Walloon Region under the project name InVivoIGT, convention number 1017266.â€.

14.
Med Phys ; 39(6Part12): 3736-3737, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28517815

RESUMO

PURPOSE: The IAEA TRS-398 code of practice can be applied for the measurement of absorbed dose to water under reference conditions with an ionization chamber. For protons, the combined relative standard uncertainty on those measurements is less than 2% while for light-ion beams, it is considerably larger, i.e. 3.2%, mainly due to the higher uncertainty contributions for the water to air stopping power ration and the W air-value on the beam quality correction factors kQ,Q0 . To decrease this uncertainty, a quantification of kQ,Q0 is proposed using a primary standard level graphite calorimeter. This work includes numerical and experimental determinations of dose conversion factors to derive dose to water from graphite calorimetry. It also reports on the first experimental data obtained with the graphite calorimeter in proton, alpha and carbon ion beams. METHODS: Firstly, the dose conversion has been calculated with by Geant4 Monte-Carlo simulations through the determination of the water to graphite stopping power ratio and the fluence correction factor. The latter factor was also derived by comparison of measured ionization curves in graphite and water. Secondly, kQ,Q0 was obtained by comparison of the dose response of ionization chambers with that of the calorimeter. RESULTS: Stopping power ratios are found to vary by no more than 0.35% up to the Bragg peak, while fluence correction factors are shown to increase slightly above unity close to the Bragg peak. The comparison of the calorimeter with ionization chambers is currently under analysis. For the modulated proton beam, preliminary results on W air confirm the value recommended in TRS-398. Data in both the non-modulated proton and light-ion beams indicate higher values but further investigation of heat loss corrections is needed. CONCLUSIONS: The application of graphite calorimetry to proton, alpha and carbon ion beams has been demonstrated successfully. Other experimental campaigns will be held in 2012. This work is supported by the BioWin program of the Wallon Government.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA