Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cell Rep ; 43(5): 114175, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691456

RESUMO

Transcription factors (TFs) are important mediators of aberrant transcriptional programs in cancer cells. In this study, we focus on TF activity (TFa) as a biomarker for cell-line-selective anti-proliferative effects, in that high TFa predicts sensitivity to loss of function of a given gene (i.e., genetic dependencies [GDs]). Our linear-regression-based framework identifies 3,047 pan-cancer and 3,952 cancer-type-specific candidate TFa-GD associations from cell line data, which are then cross-examined for impact on survival in patient cohorts. One of the most prominent biomarkers is TEAD1 activity, whose associations with its predicted GDs are validated through experimental evidence as proof of concept. Overall, these TFa-GD associations represent an attractive resource for identifying innovative, biomarker-driven hypotheses for drug discovery programs in oncology.

2.
Nature ; 629(8013): 927-936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588697

RESUMO

Broad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations1,2. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants3. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS4. Here we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumour activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumour versus normal tissues. Treated tumours exhibited waves of apoptosis along with sustained proliferative arrest, whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC mouse model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumours identified Myc copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance.


Assuntos
Apoptose , Carcinoma Ductal Pancreático , Proliferação de Células , Guanosina Trifosfato , Neoplasias Pancreáticas , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Camundongos , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Feminino , Proliferação de Células/efeitos dos fármacos , Guanosina Trifosfato/metabolismo , Modelos Animais de Doenças , Masculino , Proteínas ras/metabolismo , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nature ; 629(8013): 919-926, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589574

RESUMO

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).


Assuntos
Mutação , Neoplasias , Humanos , Animais , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Feminino , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Guanosina Trifosfato/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
4.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664416

RESUMO

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Assuntos
Proteína p300 Associada a E1A , Redes Reguladoras de Genes , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/antagonistas & inibidores , Linhagem Celular Tumoral , Redes Reguladoras de Genes/efeitos dos fármacos , Animais , Domínios Proteicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Antineoplásicos/farmacologia
5.
Cancer Res ; 84(6): 872-886, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486486

RESUMO

Medulloblastoma is one of the most common malignant brain tumors of children, and 30% of medulloblastomas are driven by gain-of-function genetic lesions in the Sonic Hedgehog (SHH) signaling pathway. EYA1, a haloacid dehalogenase phosphatase and transcription factor, is critical for tumorigenesis and proliferation of SHH medulloblastoma (SHH-MB). Benzarone and benzbromarone have been identified as allosteric inhibitors of EYA proteins. Using benzarone as a point of departure, we developed a panel of 35 derivatives and tested them in SHH-MB. Among these compounds, DS-1-38 functioned as an EYA antagonist and opposed SHH signaling. DS-1-38 inhibited SHH-MB growth in vitro and in vivo, showed excellent brain penetrance, and increased the lifespan of genetically engineered mice predisposed to fatal SHH-MB. These data suggest that EYA inhibitors represent promising therapies for pediatric SHH-MB. SIGNIFICANCE: Development of a benzarone derivative that inhibits EYA1 and impedes the growth of SHH medulloblastoma provides an avenue for improving treatment of this malignant pediatric brain cancer.


Assuntos
Benzobromarona/análogos & derivados , Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Camundongos , Humanos , Criança , Proteínas Hedgehog , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Neoplasias Cerebelares/tratamento farmacológico
7.
J Med Chem ; 67(4): 2631-2666, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38330278

RESUMO

Citron kinase (CITK) is an AGC-family serine/threonine kinase that regulates cytokinesis. Despite knockdown experiments implicating CITK as an anticancer target, no selective CITK inhibitors exist. We transformed a previously reported kinase inhibitor with weak off-target CITK activity into a first-in-class CITK chemical probe, C3TD879. C3TD879 is a Type I kinase inhibitor which potently inhibits CITK catalytic activity (biochemical IC50 = 12 nM), binds directly to full-length human CITK in cells (NanoBRET Kd < 10 nM), and demonstrates favorable DMPK properties for in vivo evaluation. We engineered exquisite selectivity for CITK (>17-fold versus 373 other human kinases), making C3TD879 the first chemical probe suitable for interrogating the complex biology of CITK. Our small-molecule CITK inhibitors could not phenocopy the effects of CITK knockdown in cell proliferation, cell cycle progression, or cytokinesis assays, providing preliminary evidence that the structural roles of CITK may be more important than its kinase activity.


Assuntos
Citocinese , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Divisão Celular , Citocinese/fisiologia , Fosforilação , Proliferação de Células
8.
bioRxiv ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328167

RESUMO

Ubiquitin is a small, highly conserved protein that acts as a posttranslational modification in eukaryotes. Ubiquitination of proteins frequently serves as a degradation signal, marking them for disposal by the proteasome. Here, we report a novel small molecule from a diversity-oriented synthesis library, BRD1732, that is directly ubiquitinated in cells, resulting in dramatic accumulation of inactive ubiquitin monomers and polyubiquitin chains causing broad inhibition of the ubiquitin-proteasome system. Ubiquitination of BRD1732 and its associated cytotoxicity are stereospecific and dependent upon two homologous E3 ubiquitin ligases, RNF19A and RNF19B. Our finding opens the possibility for indirect ubiquitination of a target through a ubiquitinated bifunctional small molecule, and more broadly raises the potential for posttranslational modification in trans.

9.
Mol Cell ; 84(2): 261-276.e18, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38176414

RESUMO

A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames (ORFs). To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a stepwise approach using multiple CRISPR-Cas9 screens to elucidate non-canonical ORFs and putative microproteins implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream ORFs (uORFs) exhibited selective functionality independent of main coding sequences. A microprotein encoded by one of these ORFs, ASNSD1-uORF or ASDURF, was upregulated, associated with MYC-family oncogenes, and promoted medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future studies seeking to define new cancer targets.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Biossíntese de Proteínas , Meduloblastoma/genética , Fases de Leitura Aberta/genética , Sobrevivência Celular/genética , Neoplasias Cerebelares/genética
10.
Mol Cancer Ther ; 23(4): 478-491, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37988559

RESUMO

The histone lysine demethylases KDM4A-C are involved in physiologic processes including stem cell identity and self-renewal during development, DNA damage repair, and cell-cycle progression. KDM4A-C are overexpressed and associated with malignant cell behavior in multiple human cancers and are therefore potential therapeutic targets. Given the role of KDM4A-C in development and cancer, we aimed to test the potent, selective KDM4A-C inhibitor QC6352 on oncogenic cells of renal embryonic lineage. The anaplastic Wilms tumor cell line WiT49 and the tumor-forming human embryonic kidney cell line HEK293 demonstrated low nanomolar QC6352 sensitivity. The cytostatic response to QC6352 in WiT49 and HEK293 cells was marked by induction of DNA damage, a DNA repair-associated protein checkpoint response, S-phase cell-cycle arrest, profound reduction of ribosomal protein gene and rRNA transcription, and blockade of newly synthesized proteins. QC6352 caused reduction of KDM4A-C levels by a proteasome-associated mechanism. The cellular phenotype caused by QC6352 treatment of reduced migration, proliferation, tumor spheroid growth, DNA damage, and S-phase cell-cycle arrest was most closely mirrored by knockdown of KDM4A as determined by siRNA knockdown of KDM4A-C. QC6352 sensitivity correlated with high basal levels of ribosomal gene transcription in more than 900 human cancer cell lines. Targeting KDM4A may be of future therapeutic interest in oncogenic cells of embryonic renal lineage or cells with high basal expression of ribosomal protein genes.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis , Histona Desmetilases com o Domínio Jumonji , Proteínas Ribossômicas , Humanos , Células HEK293 , Histona Desmetilases com o Domínio Jumonji/genética , Linhagem Celular Tumoral , Rim/metabolismo , Ribossomos/metabolismo
11.
Nat Cancer ; 5(1): 66-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151625

RESUMO

Chromosomal instability (CIN) is a hallmark of cancer, caused by persistent errors in chromosome segregation during mitosis. Aggressive cancers like high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) have a high frequency of CIN and TP53 mutations. Here, we show that inhibitors of the KIF18A motor protein activate the mitotic checkpoint and selectively kill chromosomally unstable cancer cells. Sensitivity to KIF18A inhibition is enriched in TP53-mutant HGSOC and TNBC cell lines with CIN features, including in a subset of CCNE1-amplified, CDK4-CDK6-inhibitor-resistant and BRCA1-altered cell line models. Our KIF18A inhibitors have minimal detrimental effects on human bone marrow cells in culture, distinct from other anti-mitotic agents. In mice, inhibition of KIF18A leads to robust anti-cancer effects with tumor regression observed in human HGSOC and TNBC models at well-tolerated doses. Collectively, our results provide a rational therapeutic strategy for selective targeting of CIN cancers via KIF18A inhibition.


Assuntos
Cinesinas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Cinesinas/genética , Cinesinas/metabolismo , Mitose/genética , Linhagem Celular , Pontos de Checagem da Fase M do Ciclo Celular
12.
Immunity ; 56(12): 2816-2835.e13, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38091953

RESUMO

Cancer cells can evade natural killer (NK) cell activity, thereby limiting anti-tumor immunity. To reveal genetic determinants of susceptibility to NK cell activity, we examined interacting NK cells and blood cancer cells using single-cell and genome-scale functional genomics screens. Interaction of NK and cancer cells induced distinct activation and type I interferon (IFN) states in both cell types depending on the cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to less sensitive B-lymphoid cancers. CRISPR screens in cancer cells uncovered genes regulating sensitivity and resistance to NK cell-mediated killing, including adhesion-related glycoproteins, protein fucosylation genes, and transcriptional regulators, in addition to confirming the importance of antigen presentation and death receptor signaling pathways. CRISPR screens with a single-cell transcriptomic readout provided insight into underlying mechanisms, including regulation of IFN-γ signaling in cancer cells and NK cell activation states. Our findings highlight the diversity of mechanisms influencing NK cell susceptibility across different cancers and provide a resource for NK cell-based therapies.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Células Matadoras Naturais , Neoplasias/genética , Apresentação de Antígeno , Genômica , Citotoxicidade Imunológica/genética , Linhagem Celular Tumoral
13.
Mol Cancer Ther ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064712

RESUMO

Anticancer nucleosides are effective against solid tumors and hematological malignancies, but typically are prone to nucleoside metabolism resistance mechanisms. Using a nucleoside-specific multiplexed high-throughput screening approach, we discovered 4'-ethynyl-2'-deoxycytidine (EdC) as a third-generation anticancer nucleoside prodrug with preferential activity against diffuse large B-cell lymphoma (DLBCL) and acute lymphoblastic leukemia (ALL). EdC requires deoxycytidine kinase (DCK) phosphorylation for its activity and induced replication fork arrest and accumulation of cells in S-phase, indicating it acts as a chain terminator. A 2.1Å co-crystal structure of DCK bound to EdC and UDP reveals how the rigid 4'-alkyne of EdC fits within the active site of DCK. Remarkably, EdC was resistant to cytidine deamination and SAMHD1 metabolism mechanisms and exhibited higher potency against ALL compared to FDA approved nelarabine. Finally, EdC was highly effective against DLBCL tumors and B-ALL in vivo. These data characterize EdC as a pre-clinical nucleoside prodrug candidate for DLBCL and ALL.

14.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38105998

RESUMO

Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.

15.
Nat Chem Biol ; 19(12): 1540-1550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884805

RESUMO

NADPH oxidases (NOXs) are transmembrane enzymes that are devoted to the production of reactive oxygen species (ROS). In cancers, dysregulation of NOX enzymes affects ROS production, leading to redox unbalance and tumor progression. Consequently, NOXs are a drug target for cancer therapeutics, although current therapies have off-target effects: there is a need for isoenzyme-selective inhibitors. Here, we describe fully validated human NOX inhibitors, obtained from an in silico screen, targeting the active site of Cylindrospermum stagnale NOX5 (csNOX5). The hits are validated by in vitro and in cellulo enzymatic and binding assays, and their binding modes to the dehydrogenase domain of csNOX5 studied via high-resolution crystal structures. A high-throughput screen in a panel of cancer cells shows activity in selected cancer cell lines and synergistic effects with KRAS modulators. Our work lays the foundation for the development of inhibitor-based methods for controlling the tightly regulated and highly localized ROS sources.


Assuntos
NADPH Oxidases , Neoplasias , Humanos , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , Oxirredução , Linhagem Celular
16.
Nature ; 622(7984): 850-862, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794185

RESUMO

Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.


Assuntos
Imunoterapia , Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Imunoterapia/métodos , Interferons/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
17.
Nat Genet ; 55(10): 1709-1720, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37749246

RESUMO

The paradigm of cancer-targeted therapies has focused largely on inhibition of critical pathways in cancer. Conversely, conditional activation of signaling pathways as a new source of selective cancer vulnerabilities has not been deeply characterized. In this study, we sought to systematically identify context-specific gene-activation-induced lethalities in cancer. To this end, we developed a method for gain-of-function genetic perturbations simultaneously across ~500 barcoded cancer cell lines. Using this approach, we queried the pan-cancer vulnerability landscape upon activating ten key pathway nodes, revealing selective activation dependencies of MAPK and PI3K pathways associated with specific biomarkers. Notably, we discovered new pathway hyperactivation dependencies in subsets of APC-mutant colorectal cancers where further activation of the WNT pathway by APC knockdown or direct ß-catenin overexpression led to robust antitumor effects in xenograft and patient-derived organoid models. Together, this study reveals a new class of conditional gene-activation dependencies in cancer.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Fosfatidilinositol 3-Quinases , beta Catenina/genética , Via de Sinalização Wnt/genética , Proliferação de Células , Linhagem Celular Tumoral
18.
Cell Chem Biol ; 30(9): 1156-1168.e7, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37689063

RESUMO

A challenge for screening new anticancer drugs is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels, which can influence cell metabolism and drug sensitivity. A general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To address this, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We screened several small molecule libraries and found that compounds targeting metabolic enzymes were differentially effective in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.


Assuntos
Técnicas de Cultura de Células , Ensaios de Triagem em Larga Escala , Humanos , Linhagem Celular , Bibliotecas de Moléculas Pequenas/farmacologia
19.
Nat Commun ; 14(1): 5484, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37673911

RESUMO

The challenge of endergonic reduction of NADP+ using NADH is overcome by ferredoxin-dependent transhydrogenases that employ electron bifurcation for electron carrier adjustments in the ancient Wood-Ljungdahl pathway. Recently, an electron-bifurcating transhydrogenase with subunit compositions distinct from the well-characterized Nfn-type transhydrogenase was described: the Stn complex. Here, we present the single-particle cryo-EM structure of the Stn family transhydrogenase from the acetogenic bacterium Sporomusa ovata and functionally dissect its electron transfer pathway. Stn forms a tetramer consisting of functional heterotrimeric StnABC complexes. Our findings demonstrate that the StnAB subunits assume the structural and functional role of a bifurcating module, homologous to the HydBC core of the electron-bifurcating HydABC complex. Moreover, StnC contains a NuoG-like domain and a GltD-like NADPH binding domain that resembles the NfnB subunit of the NfnAB complex. However, in contrast to NfnB, StnC lost the ability to bifurcate electrons. Structural comparison allows us to describe how the same fold on one hand evolved bifurcation activity on its own while on the other hand combined with an associated bifurcating module, exemplifying modular evolution in anaerobic metabolism to produce activities critical for survival at the thermodynamic limit of life.


Assuntos
Elétrons , Ferredoxinas , Anaerobiose , Termodinâmica , Extremidade Superior
20.
Nat Metab ; 5(5): 765-776, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198474

RESUMO

Glucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To identify mechanisms by which cells can tolerate complete loss of glucose, we performed nutrient-sensitized genome-wide genetic screens and a PRISM growth assay across 482 cancer cell lines. We report that catabolism of uridine from the medium enables the growth of cells in the complete absence of glucose. While previous studies have shown that uridine can be salvaged to support pyrimidine synthesis in the setting of mitochondrial oxidative phosphorylation deficiency1, our work demonstrates that the ribose moiety of uridine or RNA can be salvaged to fulfil energy requirements via a pathway based on: (1) the phosphorylytic cleavage of uridine by uridine phosphorylase UPP1/UPP2 into uracil and ribose-1-phosphate (R1P), (2) the conversion of uridine-derived R1P into fructose-6-P and glyceraldehyde-3-P by the non-oxidative branch of the pentose phosphate pathway and (3) their glycolytic utilization to fuel ATP production, biosynthesis and gluconeogenesis. Capacity for glycolysis from uridine-derived ribose appears widespread, and we confirm its activity in cancer lineages, primary macrophages and mice in vivo. An interesting property of this pathway is that R1P enters downstream of the initial, highly regulated steps of glucose transport and upper glycolysis. We anticipate that 'uridine bypass' of upper glycolysis could be important in the context of disease and even exploited for therapeutic purposes.


Assuntos
Ribose , Uridina , Ribose/metabolismo , Uridina/metabolismo , RNA/metabolismo , Glicólise , Humanos , Linhagem Celular Tumoral , Fosforilação Oxidativa , Meios de Cultura , Glucose , Células K562 , Proliferação de Células , Via de Pentose Fosfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA