Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Environ Int ; 186: 108577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521043

RESUMO

Male fertility has been declining worldwide especially in countries with high levels of endocrine disrupting chemicals (EDCs). Per- and polyfluorinated alkyl Substances (PFAS) have been classified as EDCs and have been linked to adverse male reproductive health. The mechanisms of these associations and their implications on offspring health remain unknown. The aims of the current study were to assess the effect of PFAS mixtures on the sperm methylome and transcriptional changes in offspring metabolic tissues (i.e., liver and fat). C57BL/6 male mice were exposed to a mixture of PFAS (PFOS, PFOA, PFNA, PFHxS, Genx; 20 µg/L each) for 18-weeks or water as a control. Genome-wide methylation was assessed on F0 epidydimal sperm using reduced representation bisulfite sequencing (RRBS) and Illumina mouse methylation array, while gene expression was assessed by bulk RNA sequencing in 8-week-old offspring derived from unexposed females. PFAS mixtures resulted in 2,861 (RRBS) and 83 (Illumina) sperm DMRs (q < 0.05). Functional enrichment revealed that PFAS-induced sperm DMRs were associated with behavior and developmental pathways in RRBS, while Illumina DMRs were related to lipid metabolism and cell signaling. Additionally, PFAS mixtures resulted in 40 and 53 differentially expressed genes (DEGs) in the liver and fat of males, and 9 and 31 DEGs in females, respectively. Functional enrichment of DEGs revealed alterations in cholesterol metabolism and mitotic cell cycle regulation in the liver and myeloid leukocyte migration in fat of male offspring, while in female offspring, erythrocyte development and carbohydrate catabolism were affected in fat. Our results demonstrate that exposure to a mixture of legacy and newly emerging PFAS chemicals in adult male mice result in aberrant sperm methylation and altered gene expression of offspring liver and fat in a sex-specific manner. These data indicate that preconception PFAS exposure in males can be transmitted to affect phenotype in the next generation.


Assuntos
Metilação de DNA , Fluorocarbonos , Fígado , Camundongos Endogâmicos C57BL , Espermatozoides , Transcriptoma , Animais , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Espermatozoides/efeitos dos fármacos , Camundongos , Transcriptoma/efeitos dos fármacos , Fluorocarbonos/toxicidade , Feminino , Metilação de DNA/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Poluentes Ambientais/toxicidade
2.
Environ Res ; 250: 118492, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373550

RESUMO

Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.


Assuntos
Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Oxigenases , Bifenilos Policlorados , Animais , Oxigenases/genética , Oxigenases/metabolismo , Bifenilos Policlorados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Poluentes Ambientais/toxicidade
3.
Front Immunol ; 14: 1303921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094302

RESUMO

Introduction: Systemic levels of the anti-inflammatory cytokine interleukin 10 (IL-10) are highest in acetaminophen (APAP)-induced acute liver failure (ALF) patients with the poorest prognosis. The mechanistic basis for this counterintuitive finding is not known, as induction of IL-10 is hypothesized to temper the pathological effects of immune cell activation. Aberrant production of IL-10 after severe liver injury could conceivably interfere with the beneficial, pro-reparative actions of immune cells, such as monocytes. Methods: To test this possibility, we determined whether IL-10 levels are dysregulated in mice with APAP-induced ALF and further evaluated whether aberrant production of IL-10 prevents monocyte recruitment and/or the resolution of necrotic lesions by these cells. Results: Our studies demonstrate that in mice challenged with 300 mg/kg acetaminophen (APAP), a hepatotoxic dose of APAP that fails to produce ALF (i.e., APAP-induced acute liver injury; AALI), Ly6Chi monocytes were recruited to the liver and infiltrated the necrotic lesions by 48 hours coincident with the clearance of dead cell debris. At 72 hours, IL-10 was upregulated, culminating in the resolution of hepatic inflammation. By contrast, in mice treated with 600 mg/kg APAP, a dose that produces clinical features of ALF (i.e., APAP-induced ALF; AALF), IL-10 levels were markedly elevated by 24 hours. Early induction of IL-10 was associated with a reduction in the hepatic numbers of Ly6Chi monocytes resulting in the persistence of dead cell debris. Inhibition of IL-10 in AALF mice, beginning at 24 hours after APAP treatment, increased the hepatic numbers of monocytes which coincided with a reduction in the necrotic area. Moreover, pharmacologic elevation of systemic IL-10 levels in AALI mice reduced hepatic myeloid cell numbers and increased the area of necrosis. Discussion: Collectively, these results indicate that during ALF, aberrant production of IL-10 disrupts the hepatic recruitment of monocytes, which prevents the clearance of dead cell debris. These are the first studies to document a mechanistic basis for the link between high IL-10 levels and poor outcome in patients with ALF.


Assuntos
Acetaminofen , Falência Hepática Aguda , Humanos , Animais , Camundongos , Acetaminofen/efeitos adversos , Interleucina-10 , Monócitos , Necrose/induzido quimicamente
4.
Toxicol Appl Pharmacol ; 456: 116284, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270329

RESUMO

Genetic and environmental factors impact on the interindividual variability of susceptibility to communicable and non-communicable diseases. A class of ubiquitous chemicals, Per- and polyfluoroalkyl substances (PFAS) have been linked in epidemiological studies to immunosuppression and increased susceptibility to viral infections, but possible mechanisms are not well elucidated. To begin to gain insight into the role of PFAS in susceptibility to one such viral infection, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), male and female C57BL/6 J mice were exposed to control water or a mixture of 5 PFAS (PFOS, PFOA, PFNA, PFHxS, Genx) for 12 weeks and lungs were isolated for examination of expression of SARS-CoV-2-related receptors Angiotensin-Converting Enzyme 2 (ACE2) and others. Secondary analyses included circulating hormones and cytokines which have been shown to directly or indirectly impact on ACE2 expression and severity of viral infections. Changes in mRNA and protein expression were analyzed by RT-qPCR and western blotting and circulating hormones and cytokines were determined by ELISA and MESO QuickPlex. The PFAS mixture decreased Ace2 mRNA 2.5-fold in male mice (p < 0.0001), with no significant change observed in females. In addition, TMPRSS2, ANPEP, ENPEP and DPP4 (other genes implicated in COVID-19 infection) were modulated due to PFAS. Plasma testosterone, but not estrogen were strikingly decreased due to PFAS which corresponded to PFAS-mediated repression of 4 representative pulmonary AR target genes; hemoglobin, beta adult major chain (Hbb-b1), Ferrochelatase (Fech), Collagen Type XIV Alpha 1 Chain (Col14a1), 5'-Aminolevulinate Synthase 2 (Alas2). Finally, PFAS modulated circulating pro and anti-inflammatory mediators including IFN-γ (downregulated 3.0-fold in females; p = 0.0301, 2.1-fold in males; p = 0.0418) and IL-6 (upregulated 5.6-fold in males; p = 0.030, no change in females). In conclusion, our data indicate long term exposure to a PFAS mixture impacts mechanisms related to expression of ACE2 in the lung. This work provides a mechanistic rationale for important future studies of PFAS exposure and subsequent viral infection.


Assuntos
COVID-19 , Fluorocarbonos , Masculino , Feminino , Camundongos , Animais , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Fluorocarbonos/toxicidade , Citocinas , Camundongos Endogâmicos C57BL , Pulmão , Hormônios , RNA Mensageiro
5.
Front Endocrinol (Lausanne) ; 13: 965384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992116

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous man-made chemicals found in consumer products including fabrics, food packaging, non-stick coatings, and aqueous film-forming foams. PFAS are stable and extremely resistant to degradation, resulting in high persistence throughout the environment as well as in human blood. PFAS consist of a large family of synthetic chemicals, with over 4000 distinct varieties having been identified and around 250 currently being manufactured at globally relevant levels. Numerous epidemiological studies have linked exposure to PFAS with adverse health effects ranging from immunotoxicity, cardiometabolic disease, developmental and reproductive effects, cancer, and recently type 2 diabetes. Several studies have demonstrated associations between serum PFAS concentrations and glycemic indicators of type 2 diabetes including glucose, insulin, and HOMA-IR in adolescent and adult cohorts. In addition, some studies have shown positive associations with incident type 2 diabetes and multiple PFAS. However, the link between PFAS exposure and the development of diabetes continues to be a disputed area of study, with conflicting data having been reported from various epidemiological studies. In this mini review we will summarize the current state of the literature linking PFAS to type 2 diabetes and discuss important future directions including the use of more complex mixtures-based statistical analyses.


Assuntos
Diabetes Mellitus Tipo 2 , Fluorocarbonos , Adolescente , Adulto , Glicemia , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/epidemiologia , Fluorocarbonos/toxicidade , Humanos , Reprodução
6.
Toxics ; 10(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35736936

RESUMO

Exposure to environmental pollutants, including dioxin-like polychlorinated biphenyls (PCBs), play an important role in vascular inflammation and cardiometabolic diseases (CMDs) by inducing oxidative stress. Earlier, we demonstrated that oxidative stress-mediated lipid peroxidation derived 4-hydroxy-2-nonenal (4HNE) contributes to CMDs by decreasing the angiogenesis of coronary endothelial cells (CECs). By detoxifying 4HNE, aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme, enhances CEC angiogenesis. Therefore, we hypothesize that ALDH2 activation attenuates a PCB 126-mediated 4HNE-induced decrease in CEC angiogenesis. To test our hypothesis, we treated cultured mouse CECs with 4.4 µM PCB 126 and performed spheroid and aortic ring sprouting assays, the ALDH2 activity assay, and Western blotting for the 4HNE adduct levels and real-time qPCR to determine the expression levels of Cyp1b1 and oxidative stress-related genes. PCB 126 increased the gene expression and 4HNE adduct levels, whereas it decreased the ALDH2 activity and angiogenesis significantly in MCECs. However, pretreatment with 2.5 µM disulfiram (DSF), an ALDH2 inhibitor, or 10 µM Alda 1, an ALDH2 activator, before the PCB 126 challenge exacerbated and rescued the PCB 126-mediated decrease in coronary angiogenesis by modulating the 4HNE adduct levels respectively. Finally, we conclude that ALDH2 can be a therapeutic target to alleviate environmental pollutant-induced CMDs.

7.
Clin Breast Cancer ; 22(1): 43-48, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34474985

RESUMO

INTRODUCTION: Psychosocial distress screening of cancer patients is an American College of Surgeons Commission on Cancer mandate for accredited cancer programs. We evaluated psychosocial distress in breast cancer patients to characterize risk factors for high distress scores at a safety net hospital. MATERIALS AND METHODS: The psychosocial distress screening form includes a list of potential issues and a distress score scaled from 1 through 10. Psychosocial distress screening results were retrospectively analyzed, along with patient demographics and clinical data. Cochran-Mantel-Haenszel test was applied to identify predictors for high distress scores, which were defined as a score of 5 and greater. RESULTS: 775 distress screens were completed by 171 breast cancer patients. High distress scores were reported in 21.3%. Patients who had no evidence of disease at time of screening were less likely to report a high distress score compared to those who were newly diagnosed or in active treatment (odds ratio 0.51, 95% CI, 0.38-0.68, P< .0001). Patients with high distress scores were more likely to report concerns with insurance (29.1% vs. 7.6%, P< .0001), transportation (16.4% vs. 4.6%, P< .0001), housing (15.2% vs 2.1%, P< .0001), sadness/depression (63.6% vs. 14.1, P< .0001), and physical issues (89.1% vs. 52.8%, P< .0001). CONCLUSION: Status of cancer at time of screening, particularly newly diagnosed cancer and active treatment of cancer were associated with high distress scores in this patient group. While there should be an emphasis to ensure patients with these risk factors receive psychosocial distress screening, routine periodic screening for all patients should continue to be implemented to ensure quality cancer care.


Assuntos
Neoplasias da Mama/psicologia , Qualidade de Vida/psicologia , Provedores de Redes de Segurança , Estresse Psicológico/psicologia , Adaptação Psicológica , Adulto , Ansiedade/psicologia , Neoplasias da Mama/terapia , Feminino , Humanos , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Assistência ao Paciente/métodos , Estudos Retrospectivos , Estresse Psicológico/etiologia
8.
Environ Int ; 157: 106843, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34479135

RESUMO

BACKGROUND: Epidemiological studies have shown Per- and polyfluoroalkyl substances (PFAS) to be associated with diseases of dysregulated lipid and sterol homeostasis such as steatosis and cardiometabolic disorders. However, the majority of mechanistic studies rely on single chemical exposures instead of identifying mechanisms related to the toxicity of PFAS mixtures. OBJECTIVES: The goal of the current study is to investigate mechanisms linking exposure to a PFAS mixture with alterations in lipid metabolism, including increased circulating cholesterol and bile acids. METHODS: Male and female wild-type C57BL/6J mice were fed an atherogenic diet used in previous studies of pollutant-accelerated atherosclerosis and exposed to water containing a mixture of 5 PFAS representing legacy, replacement, and alternative subtypes (i.e., PFOA, PFOS, PFNA, PFHxS, and GenX), each at a concentration of 2 mg/L, for 12 weeks. Changes at the transcriptome and metabolome level were determined by RNA-seq and high-resolution mass spectrometry, respectively. RESULTS: We observed increased circulating cholesterol, sterol metabolites, and bile acids due to PFAS exposure, with some sexual dimorphic effects. PFAS exposure increased hepatic injury, demonstrated by increased liver weight, hepatic inflammation, and plasma alanine aminotransferase levels. Females displayed increased lobular and portal inflammation compared to the male PFAS-exposed mice. Hepatic transcriptomics analysis revealed PFAS exposure modulated multiple metabolic pathways, including those related to sterols, bile acids, and acyl carnitines, with multiple sex-specific differences observed. Finally, we show that hepatic and circulating levels of PFOA were increased in exposed females compared to males, but this sexual dimorphism was not the same for other PFAS examined. DISCUSSION: Exposure of mice to a mixture of PFAS results in PFAS-mediated modulation of cholesterol levels, possibly through disruption of enterohepatic circulation.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Animais , Colesterol , Poluentes Ambientais/toxicidade , Feminino , Fluorocarbonos/toxicidade , Metabolismo dos Lipídeos , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
J Nutr Biochem ; 95: 108633, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33789150

RESUMO

The liver is a critical mediator of lipid and/or glucose homeostasis and is a primary organ involved in dynamic changes during feeding and fasting. Additionally, hepatic-centric pathways are prone to dysregulation during pathophysiological states including metabolic syndrome (MetS) and non-alcoholic fatty liver disease. Omics platforms and GWAS have elucidated genes related to increased risk of developing MetS and related disorders, but mutations in these metabolism-related genes are rare and cannot fully explain the increasing prevalence of MetS-related pathologies worldwide. Complex interactions between diet, lifestyle, environmental factors, and genetic predisposition jointly determine inter-individual variability of disease risk. Given the complexity of these interactions, researchers have focused on master regulators of metabolic responses incorporating and mediating the impact of multiple environmental cues. Transcription factors are DNA binding, terminal executors of signaling pathways that modulate the cellular responses to complex metabolic stimuli and are related to the control of hepatic lipid and glucose homeostasis. Among numerous hepatic transcription factors involved in regulating metabolism, three emerge as key players in transducing nutrient sensing, which are dysregulated in MetS-related perturbations in both clinical and preclinical studies: cAMP Responsive Element Binding Protein 3 Like 3 (CREB3L3), Peroxisome Proliferator Activated Receptor Alpha (PPAR), and Forkhead Box O1 (FOXO1). Additionally, these three transcription factors appear to be amenable to dietary and/or nutrient-based therapies, being potential targets of nutritional therapy. In this review we aim to describe the activation, regulation, and impact of these transcription factors in the context of metabolic homeostasis. We also summarize their perspectives in MetS and nutritional therapies.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dieta/efeitos adversos , Metabolismo Energético , Proteína Forkhead Box O1/metabolismo , PPAR alfa/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , PPAR alfa/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-33335011

RESUMO

Tyrosine kinase inhibitors (TKIs) have transformed the standard of care in lung cancer. A number of TKIs have been discovered that specifically target oncogenes, including MET receptor tyrosine kinase. Second-generation MET TKIs are showing improved efficacy over first-generation TKIs. Herein, we report a case of a patient with metastatic lung adenocarcinoma harboring a MET exon 14 splice site mutation who has had prolonged disease control by a second-generation MET-TKI tepotinib. A 66-yr-old man was diagnosed with stage IV lung adenocarcinoma. He was started on carboplatin, paclitaxel, and bevacizumab, but had severe toxicity. He was switched to pembrolizumab as his tumor was PD-L1 70%, and molecular testing was not yet performed because of insufficient tissue. A bronchoscopy with endobronchial ultrasound was performed and a MET exon 14 splice site mutation was detected by next-generation sequencing. Upon progression, he was then enrolled in a clinical trial of tepotinib and continues with stable disease for more than 45 cycles and 31 mo. The MET receptor tyrosine kinase and the ligand hepatocyte growth factor (HGF) have been implicated as oncogenes and drivers of non-small-cell lung cancer (NSCLC). Newer MET TKIs including capmatinib and tepotinib more recently showed not only improved localized control and response, but early data suggests intracranial activity as compared to first-generation MET TKIs, both in the front-line and the refractory setting. This is a case report demonstrating an effective duration of response in a patient with widely metastatic lung adenocarcinoma harboring a MET exon 14 mutation.


Assuntos
Neoplasias Encefálicas/complicações , Carcinoma Pulmonar de Células não Pequenas/genética , Éxons , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Idoso , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Piperidinas , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/genética , Piridazinas , Pirimidinas
11.
Artigo em Inglês | MEDLINE | ID: mdl-33255777

RESUMO

Volatile organic compounds (VOCs) are a group of aromatic or chlorinated organic chemicals commonly found in manufactured products that have high vapor pressure, and thus vaporize readily at room temperature. While airshed VOCs are well studied and have provided insights into public health issues, we suggest that belowground VOCs and the related vapor intrusion process could be equally or even more relevant to public health. The persistence, movement, remediation, and human health implications of subsurface VOCs in urban landscapes remain relatively understudied despite evidence of widespread contamination. This review explores the state of the science of subsurface movement and remediation of VOCs through groundwater and soils, the linkages between these poorly understood contaminant exposure pathways and health outcomes based on research in various animal models, and describes the role of these contaminants in human health, focusing on birth outcomes, notably low birth weight and preterm birth. Finally, this review provides recommendations for future research to address knowledge gaps that are essential for not only tackling health disparities and environmental injustice in post-industrial cities, but also protecting and preserving critical freshwater resources.


Assuntos
Exposição Ambiental , Água Subterrânea , Saúde Reprodutiva , Poluentes do Solo , Compostos Orgânicos Voláteis , Animais , Cidades , Exposição Ambiental/estatística & dados numéricos , Feminino , Água Subterrânea/química , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Michigan , Gravidez , Nascimento Prematuro , Saúde Reprodutiva/estatística & dados numéricos , Poluentes do Solo/análise , Compostos Orgânicos Voláteis/efeitos adversos
12.
World J Gastroenterol ; 26(16): 1879-1887, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32390699

RESUMO

The liver functions, in part, to prevent exposure of the body to potentially harmful substances ingested in the diet. While it is highly efficient at accomplishing this, it is frequently prone to liver injury due to the biotransformation of xenobiotics into toxic metabolites. To counter this injury, the liver has evolved a unique capacity to rapidly and efficiently repair itself. Successful resolution of acute liver injury relies on hepatic macrophage populations that orchestrate the reparative response. After injury, Kupffer cells, the resident macrophages of the liver, become activated and secrete proinflammatory cytokines. These cytokines recruit other immune cells, including monocyte-derived macrophages, to the liver where they contribute to the repair process. Monocyte-derived macrophages traffic into the necrotic foci where they rapidly phagocytose dead cell debris. Simultaneous with this process, these cells change phenotype from a proinflammatory macrophage to a pro-restorative macrophage that produce pro-mitogenic growth factors and anti-inflammatory cytokines. Ultimately this process triggers resolution of inflammation, and along with proliferation of other hepatic cells, restores the liver architecture and function. While the mechanisms regulating specific macrophage functions during repair remain to be elucidated, recent studies indicate a key role for the fibrinolytic system in coordinating macrophage function during repair. In this review, we will highlight the function and role of hepatic macrophages in repair after acute liver injury, and will discuss the role of the fibrinolytic enzyme, plasmin, in regulation of these various processes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Fibrinólise/imunologia , Células de Kupffer/imunologia , Regeneração Hepática/imunologia , Ativação de Macrófagos , Acetaminofen/intoxicação , Animais , Proliferação de Células , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Estreladas do Fígado/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia
13.
Front Toxicol ; 2: 601149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35296120

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are ubiquitously found in the environment due to their widespread commercial use and high chemical stability. Humans are exposed primarily through ingestion of contaminated water and food and epidemiological studies over the last several decades have shown that PFAS levels are associated with adverse chronic health effects, including cardiometabolic disorders such as hyperlipidemia and non-alcoholic fatty liver disease. Perhaps the most well-established effects, as demonstrated in animal studies and human epidemiological studies, are the metabolic alterations PFAS exposure can lead to, especially on lipid homeostasis and signaling. This altered lipid metabolism has often been linked to conditions such as dyslipidemia, leading to fatty liver disease and steatosis. Western diets enriched in high fat and high cholesterol containing foods may be an important human exposure route of PFAS and may also act as an important modulator of associated toxicities. In fact, the chemical structure of PFAS resemble fatty acids and may activate some of the same signaling cascades critical for endogenous metabolism. In this review we aim to outline known dietary exposure sources of PFAS, describe the detrimental metabolic health effects associated with PFAS exposure, and focus on studies examining emerging interaction of dietary effects with PFAS exposure that further alter the dysregulated metabolic state.

14.
Trends Mol Med ; 26(1): 119-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327706

RESUMO

Mitochondria have emerged as important pharmacological targets because of their key role in cellular proliferation and death. In tumor tissues, mitochondria can switch metabolic phenotypes to meet the challenges of high energy demand and macromolecular synthesis. Furthermore, mitochondria can engage in crosstalk with the tumor microenvironment, and signals from cancer-associated fibroblasts can impinge on mitochondria. Cancer cells can also acquire a hybrid phenotype in which both glycolysis and oxidative phosphorylation (OXPHOS) can be utilized. This hybrid phenotype can facilitate metabolic plasticity of cancer cells more specifically in metastasis and therapy-resistance. In light of the metabolic heterogeneity and plasticity of cancer cells that had until recently remained unappreciated, strategies targeting cancer metabolic dependency appear to be promising in the development of novel and effective cancer therapeutics.


Assuntos
Metabolismo Energético/fisiologia , Mitocôndrias/fisiologia , Neoplasias/fisiopatologia , Animais , Glicólise/fisiologia , Humanos , Fosforilação Oxidativa , Microambiente Tumoral/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-31555773

RESUMO

The liver contains two distinct populations of macrophages, monocyte-derived macrophages (MDMs), which primarily reside proximal to the Glisson's capsule and Kupffer cells, which reside within the sinusoids. Kupffer cells infiltrate the liver during embryogenesis and are replenished from local proliferation of mature Kupffer cells. By contrast MDMs arise from hematopoietic stem cells in the bone marrow and are replenishedfrom circulating monocytes. Studies have revealed that these two hepatic macrophage populations possess distinct transcriptomic profiles, suggesting that they may be functionally distinct. In the present study, we tested the hypothesis that MDMs and Kupffer cells are differentially sensitive to bacterial lipopolysaccharide (LPS). MDMs and Kupffer cells were purified to greater than 90% from the livers of mice by using magnetic beads labeled with Cx3cr1 antibody for MDMs and F4/80 antibody for Kupffer cells. Basal levels of tumor necrosis factor-α (TNF-α) mRNA were higher in MDMs when compared to Kupffer cells. After treatment with LPS, mRNA levels of TNF-α, Cxcll, and Cxcl2 were increased to a greater extent in MDMs when compared to Kupffer cells. To confirm these findings, Kupffer cells and MDMs were isolated from mice in which bone marrow transplantation was used to selectively tag cells arising from hematopoietic stem cells in adult mice. Similar to above, treatment of MDMs with LPS increased TNF-α, Cxcll, and Cxcl2 to a greater extent when compared to Kupffer cells. Collectively, these results indicate that MDMs exhibit a greater pro-inflammatory phenotype in the liver when exposed to LPS.

16.
Am J Pathol ; 189(10): 1986-2001, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31381887

RESUMO

Kupffer cells and monocyte-derived macrophages are critical for liver repair after acetaminophen (APAP) overdose. These cells produce promitogenic cytokines and growth factors, and they phagocytose dead cell debris, a process that is critical for resolution of inflammation. The factors that regulate these dynamic functions of macrophages after APAP overdose, however, are not fully understood. We tested the hypothesis that the fibrinolytic enzyme, plasmin, is a key regulator of macrophage function after APAP-induced liver injury. In these studies, inhibition of plasmin in mice with tranexamic acid delayed up-regulation of proinflammatory cytokines after APAP overdose. In culture, plasmin directly, and in synergy with high-mobility group B1, stimulated Kupffer cells and bone marrow-derived macrophages to produce cytokines by a mechanism that required NF-κB. Inhibition of plasmin in vivo also prevented trafficking of monocyte-derived macrophages into necrotic lesions after APAP overdose. This prevented phagocytic removal of dead cells, prevented maturation of monocyte-derived macrophages into F4/80-expressing macrophages, and prevented termination of proinflammatory cytokine production. Our studies reveal further that phagocytosis is an important stimulus for cessation of proinflammatory cytokine production as treatment of proinflammatory, monocyte-derived macrophages, isolated from APAP-treated mice, with necrotic hepatocytes decreased expression of proinflammatory cytokines. Collectively, these studies demonstrate that plasmin is an important regulator of macrophage function after APAP overdose.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fibrinolisina/metabolismo , Células de Kupffer/patologia , Macrófagos/patologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Overdose de Drogas , Mediadores da Inflamação/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose
18.
Support Care Cancer ; 25(7): 2155-2167, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28247127

RESUMO

PURPOSE: Ipilimumab was the first FDA-approved agent for advanced melanoma to improve survival and represents a paradigm shift in melanoma and cancer treatment. Its unique toxicity profile and kinetics of treatment response raise novel patient education challenges. We assessed patient perceptions of ipilimumab therapy across the treatment trajectory. METHODS: Four patient cohorts were assessed at different time points relative to treatment initiation: (1) prior to initiation of ipilimumab (n = 10), (2) at weeks 10-12 before restaging studies (n = 11), (3) at week 12 following restaging studies indicating progression of disease (n = 10), and (4) at week 12 following restaging studies indicating either a radiographic response or disease stability (n = 10). Patients participated in a semistructured qualitative interview to assess their experiences with ipilimumab. Quality of life was assessed via the Functional Assessment of Cancer Therapy-General and its Melanoma-specific module. RESULTS: Perceived quality of life was comparable across cohorts, and a majority of the sample understood side effects from ipilimumab and the potential for a delayed treatment response. Patients without progression of disease following restaging studies at week 12 held more positive views regarding ipilimumab compared to patients who had progressed. CONCLUSION: Patients generally regarded ipilimumab positively despite the risk of unique toxicities and potential for delayed therapeutic responses; however, those with progression expressed uncertainty regarding whether taking ipilimumab was worthwhile. Physician communication practices and patient education regarding realistic expectations for therapeutic benefit as well as unique toxicities associated with ipilimumab should be developed so that patients can better understand the possible outcomes from treatment.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Melanoma/tratamento farmacológico , Qualidade de Vida/psicologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Ipilimumab , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Adulto Jovem
19.
Cell Mol Gastroenterol Hepatol ; 1(6): 589-597, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28210703

RESUMO

Liver fibrosis remains a significant clinical problem in the United States and throughout the world. Although important advances in the understanding of this disease have been made, no effective pharmacologic agents have been developed that directly prevent or reverse the fibrotic process. Many of the successes in liver fibrosis treatment have been targeted toward treating the cause of fibrosis, such as the development of new antivirals that eradicate hepatitis virus. For many patients, however, this is not feasible, so a liver transplant remains the only viable option. Thus, there is a critical need to identify new therapeutic targets that will slow or reverse the progression of fibrosis in such patients. Research over the last 16 years has identified hypoxia-inducible factors (HIFs) as key transcription factors that drive many aspects of liver fibrosis, making them potential targets of therapy. In this review, we discuss the latest work on HIFs and liver fibrosis, including the cell-specific functions of these transcription factors in the development of liver fibrosis.

20.
J Immunol ; 192(8): 3847-3857, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24639359

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) is activated in hepatic stellate cells (HSCs) by hypoxia and regulates genes important for tissue repair. Whether HIF-1α is activated in HSCs after acute injury and contributes to liver regeneration, however, is not known. To investigate this, mice were generated with reduced levels of HIF-1α in HSCs by crossing HIF-1α floxed mice with mice that express Cre recombinase under control of the glial fibrillary acidic protein (GFAP) promoter (i.e., HIF-1α-GFAP Cre+ mice). These mice and control mice (i.e., HIF-1α-GFAP Cre- mice) were treated with a single dose of carbon tetrachloride, and liver injury and repair were assessed. After carbon tetrachloride, HIF-1α was activated in HSCs. Although liver injury was not different between the two strains of mice, during resolution of injury, clearance of necrotic cells was decreased in HIF-1α-GFAP Cre+ mice. In these mice, the persistence of necrotic cells stimulated a fibrotic response characterized by extensive collagen deposition. Hepatic accumulation of macrophages, which clear necrotic cells from the liver after carbon tetrachloride, was not affected by HIF-1α deletion in HSCs. Conversion of macrophages to M1-like, proinflammatory macrophages, which have increased phagocytic activity, however, was reduced in HIF-1α-GFAP Cre+ mice as indicated by a decrease in proinflammatory cytokines and a decrease in the percentage of Gr1(hi) macrophages. Collectively, these studies have identified a novel function for HSCs and HIF-1α in orchestrating the clearance of necrotic cells from the liver and demonstrated a key role for HSCs in modulating macrophage phenotype during acute liver injury.


Assuntos
Células Estreladas do Fígado/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Fenótipo , Animais , Tetracloreto de Carbono/farmacologia , Proliferação de Células , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Deleção de Genes , Células Estreladas do Fígado/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Necrose , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA