Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
3.
Curr Trop Med Rep ; 6(2): 35-41, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31772912

RESUMO

Histoplasmosis is an infection caused by the dimorphic fungus Histoplasma capsulatum. Histoplasmosis is typically self-limited and presents asymptomatically in most people. Nevertheless, histoplasmosis can cause severe pulmonary disease and death. Histoplasmosis is increasingly found worldwide; however, it is best documented in the endemic region of the Mississippi river valley system in the Eastern part of the United States (US). Epidemiological studies from the US detailing the morbidity, mortality, and cost associated with histoplasmosis underscore the need to develop a vaccine. PURPOSE OF REVIEW: This review will detail some of the major developments in potential vaccines against histoplasmosis, with particular emphasis on those that could be used to immunize immunocompromised hosts. Additionally, this review will highlight some non-traditional vaccine-like ideas for the prevention of diverse mycoses. RECENT FINDINGS: Historically, immunization strategies against histoplasmosis have largely focused on identifying immunogenic proteins that confer protection in animal models. More recently, novel active, therapeutic, and immunomodulatory strategies have been explored as potential alternatives for those with various immune-deficiencies. SUMMARY: The studies summarized in this review demonstrate that more research is needed to clarify the immunobiology, clinical role and efficacy of each candidate vaccine in the ever-expanding potential armamentarium against histoplasmosis.

4.
Nat Chem ; 7(11): 913-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26492012

RESUMO

Several aggregation-prone proteins associated with neurodegenerative diseases can be modified by O-linked N-acetyl-glucosamine (O-GlcNAc) in vivo. One of these proteins, α-synuclein, is a toxic aggregating protein associated with synucleinopathies, including Parkinson's disease. However, the effect of O-GlcNAcylation on α-synuclein is not clear. Here, we use synthetic protein chemistry to generate both unmodified α-synuclein and α-synuclein bearing a site-specific O-GlcNAc modification at the physiologically relevant threonine residue 72. We show that this single modification has a notable and substoichiometric inhibitory effect on α-synuclein aggregation, while not affecting the membrane binding or bending properties of α-synuclein. O-GlcNAcylation is also shown to affect the phosphorylation of α-synuclein in vitro and block the toxicity of α-synuclein that was exogenously added to cells in culture. These results suggest that increasing O-GlcNAcylation may slow the progression of synucleinopathies and further support a general function for O-GlcNAc in preventing protein aggregation.


Assuntos
Acetilglucosamina/química , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Acilação , Humanos , alfa-Sinucleína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA