Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chempluschem ; 89(6): e202400034, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38380972

RESUMO

With the increasing use of pressure-sensitive adhesives (PSAs) in various industries, there is a need for greater sustainability, particularly in developing polymer materials from renewable resources, as well as the reuse and recycling of materials to reduce environmental impact, reduce waste, or extend their life. Here, we outlined the required properties of PSAs which are governed by the molecular parameters (molecular weights, dispersities, molecular weight between entanglement, molecular weight between cross-links and gel content) of polymer materials which subsequently define the physical properties (storage and loss moduli, glass transition temperature) that are required for good performance in peel, tack and shear tests. The sustainable approach discussed here is the development of degradable polymer materials featuring selectively degradable linkages in the backbone. This provides a viable alternative for the design of PSAs that could overcome the 'stickies' problem and make the recycling of glass and cardboard more efficient.

2.
Angew Chem Int Ed Engl ; 62(34): e202307009, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37378955

RESUMO

Pressure-sensitive adhesives (PSAs) are made from soft, irreversibly lightly crosslinked polymers. Even after removal from surfaces, they retain insoluble networks which pose problems during the recycling of glass and cardboard. Herein, degradable PSAs are presented that provide the required performance in use but have networks that can be degraded after use. A series of copolymers was prepared through radical copolymerization of n-butyl acrylate, 4-acryloyloxy benzophenone (ABP) photo-crosslinker, and dibenzo[c,e]oxepin-5(7H)-thione (DOT) to provide degradable backbone thioesters. The optimum tack and peel strengths were found for molar contents of 0.05 mol% ABP and 0.25 mol% DOT. Degradation of the backbone thioesters through aminolysis or thiolysis led to the full dissolution of the networks, loss of adhesive properties of films (decreases in the measured tack and peel strengths), and the quick detachment of model labels from a substrate. Inclusion of DOT into PSAs offers a viable route toward degradable and recyclable packaging labels.

3.
ACS Appl Mater Interfaces ; 14(26): 30216-30227, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737668

RESUMO

Pressure-sensitive adhesives (PSAs) are usually made from viscoelastic, high-molecular-weight copolymers, which are fine-tuned by adjusting the comonomer ratios, molecular weights, and cross-link densities to optimize the adhesion properties for the desired end-use. To create a lightly cross-linked network, an ultraviolet (UV) photoinitiator can be incorporated. Here, we present the first use of perfluorophenylazide chemistry to control precisely a polyacrylate network for application as a PSA. Upon UV irradiation, the highly reactive nitrene from the azide moiety reacts with nearby molecules through a C-H insertion reaction, resulting in cross-linking via covalent bonding. This approach offers three benefits: (1) a means to optimize adhesive properties without the addition of an external photoinitiator; (2) the ability to switch off the tack adhesion on demand via a high cross-linking density; and (3) a platform for additional chemical modification. A series of poly(n-butyl acrylate-co-2,3,4,5,6-pentafluorobenzyl acrylate) or poly(PFBA-co-BA) copolymers were synthesized and modified post-polymerization into the photo-reactive poly(n-butyl acrylate-co-4-azido-2,3,5,6-tetrafluorobenzyl acrylate) [azide-modified poly(PFBA-co-BA)] with various molar contents. When cast into films, the azide-modified copolymers with a high azide content achieved a very high shear resistance after UV irradiation, whereas the tack and peel adhesion decreased strongly with the increase in azide content, indicating that excessive cross-linking occurred. These materials are thus photo-switchable. However, in the low range of azide content, an optimum probe tack adhesion energy was obtained in films with a 0.3 mol % azide content, where a long stress plateau (indicating good fibrillation) with a high plateau stress was observed. An optimum peel adhesion strength was achieved with 0.5 mol % azide. Thus, the adhesion was finely controlled by the degree of cross-linking of the PSA, as determined by the azide content of the copolymer chain. Finally, as a demonstration of the versatility and advantages of the material platform, we show an azide-aldehyde-amine multicomponent modification of the azide copolymer to make a dye-functionalized film that retains its adhesive properties. This first demonstration of using azide functionality has enormous potential for functional PSA design.

4.
Biomacromolecules ; 23(5): 2031-2039, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35472265

RESUMO

Being nondegradable, vinyl polymers have limited biomedical applicability. Unfortunately, backbone esters incorporated through conventional radical ring-opening methods do not undergo appreciable abiotic hydrolysis under physiologically relevant conditions. Here, PEG acrylate and di(ethylene glycol) acrylamide-based copolymers containing backbone thioesters were prepared through the radical ring-opening copolymerization of the thionolactone dibenzo[c,e]oxepin-5(7H)-thione. The thioesters degraded fully in the presence of 10 mM cysteine at pH 7.4, with the mechanism presumed to involve an irreversible S-N switch. Degradations with N-acetylcysteine and glutathione were reversible through the thiol-thioester exchange polycondensation of R-SC(═O)-polymer-SH fragments with full degradation relying on an increased thiolate/thioester ratio. Treatment with 10 mM glutathione at pH 7.2 (mimicking intracellular conditions) triggered an insoluble-soluble switch of a temperature-responsive copolymer at 37 °C and the release of encapsulated Nile Red (as a drug model) from core-degradable diblock copolymer micelles. Copolymers and their cysteinolytic degradation products were found to be noncytotoxic, making thioester backbone-functional polymers promising for drug delivery applications.


Assuntos
Polietilenoglicóis , Polímeros , Portadores de Fármacos , Liberação Controlada de Fármacos , Glutationa , Micelas
5.
Soft Matter ; 16(36): 8453-8461, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32812973

RESUMO

In this work, we synthesize a polydisperse aqueous colloidal system composed of small and large zwitterionic particles, as well as medium sized standard acrylic particles. By assembling these dispersions into films by drying, we show using atomic force microscopy (AFM) how their top surfaces can be mostly covered by zwitterionic groups for a wide range of evaporation rates. We probe underneath the top film surface using Fourier-transform infrared (FTIR) spectroscopy - attenuated total reflection (ATR), observing that the content in zwitterionic particles of the film upper layer increases for faster evaporation rates. We show how polydisperse systems hold great potential to overcome the evaporation rate dependence of size segregation processes in drying colloidal blends, and we provide further insights into the assembly mechanisms involved. Polydisperse blends enhance the robustness of such processes for application in coatings and other soft products where evaporation rate can not be tuned.

6.
Macromol Rapid Commun ; 40(2): e1800346, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29974542

RESUMO

The use of 2,3,4,5,6-pentafluorobenzyl methacrylate (PFBMA) as a core-forming monomer in ethanolic reversible addition-fragmentation chain transfer dispersion polymerization formulations is presented. Poly[poly(ethylene glycol) methyl ether methacrylate] (pPEGMA) macromolecular chain transfer agents were chain-extended with PFBMA leading to nanoparticle formation via polymerization-induced self-assembly (PISA). pPEGMA-pPFBMA particles exhibited the full range of morphologies (spheres, worms, and vesicles), including pure and mixed phases. Worm phases formed gels that underwent a thermo-reversible degelation and morphological transition to spheres (or spheres and vesicles) upon heating. Postsynthesis, the pPFBMA cores were modified through thiol-para-fluoro substitution reactions in ethanol using 1,8-diazabicyclo[5.4.0]undec-7-ene as the base. For monothiols, conversions were 64% (1-octanethiol) and 94% (benzyl mercaptan). Spherical and worm-shaped nano-objects were core cross-linked using 1,8-octanedithiol, which prevented their dissociation in nonselective solvents. For a temperature-responsive worm sample, cross-linking additionally resulted in the loss of the temperature-triggered morphological transition. The use of the reactive monomer PFBMA in PISA formulations presents a simple method to prepare well-defined nano-objects similar to those produced with nonreactive monomers (e.g., benzyl methacrylate) and to retain morphologies independent of solvent and temperature.


Assuntos
Álcoois Benzílicos/química , Técnicas de Química Sintética/métodos , Metacrilatos/química , Nanopartículas/química , Polimerização , Polímeros/química , Compostos de Sulfidrila/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Microscopia Eletrônica de Transmissão e Varredura , Modelos Químicos , Estrutura Molecular , Nanopartículas/ultraestrutura , Polímeros/síntese química , Temperatura , Temperatura de Transição
7.
Chem Commun (Camb) ; 55(1): 55-58, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30484445

RESUMO

The radical copolymerization of the thionolactone dibenzo[c,e]oxepane-5-thione with acrylates, acrylonitrile, and N,N-dimethylacrylamide afforded copolymers containing a controllable amount of backbone thioesters which could be selectively cleaved. The process is compatible with RAFT polymerization and promising for the development of advanced degradable polymers.

8.
Macromol Rapid Commun ; 38(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27859900

RESUMO

(Co)Polymers containing pentafluorophenylacetylene (F5 PA) have been prepared for the first time mediated by [Rh(nbd)Cl]2 /NEt3 to give materials with properties typical of poly(phenylacetylene)s prepared with this catalyst/co-catalyst combination. It is demonstrated that the F5 PA repeat units in these new (co)polymers serve as convenient reactive species for post-polymerization modification with thiols via para-fluoro aromatic nucleophilic substitution reactions to give an entirely new family of novel thioether-functional polyene materials accompanied by absorption maxima shifts of up to 130 nm. Finally, the electrochemical properties of these new fluorinated polyene materials are briefly examined and the distinct difference in behavior of the F5 PA homopolymer versus polyphenylacetylene, copolymers, and functional derivatives is highlighted.


Assuntos
Técnicas Eletroquímicas , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/síntese química , Polienos/química , Polienos/síntese química , Estrutura Molecular , Polimerização
9.
Macromol Rapid Commun ; 38(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27900822

RESUMO

Polymerization-induced self-assembly (PISA) is an extremely versatile method for the in situ preparation of soft-matter nanoparticles of defined size and morphologies at high concentrations, suitable for large-scale production. Recently, certain PISA-prepared nanoparticles have been shown to exhibit reversible polymorphism ("shape-shifting"), typically between micellar, worm-like, and vesicular phases (order-order transitions), in response to external stimuli including temperature, pH, electrolytes, and chemical modification. This review summarises the literature to date and describes molecular requirements for the design of stimulus-responsive nano-objects. Reversible pH-responsive behavior is rationalised in terms of increased solvation of reversibly ionized groups. Temperature-triggered order-order transitions, conversely, do not rely on inherently thermo-responsive polymers, but are explained based on interfacial LCST or UCST behavior that affects the volume fractions of the core and stabilizer blocks. Irreversible morphology transitions, on the other hand, can result from chemical post-modification of reactive PISA-made particles. Emerging applications and future research directions of this "smart" nanoparticle behavior are reviewed.


Assuntos
Nanopartículas/química , Polimerização , Polímeros/química , Eletrólitos/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Polímeros/síntese química , Temperatura
10.
Chem Commun (Camb) ; 50(67): 9561-4, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25011541

RESUMO

Mechanical stimulation of supersaturated aqueous CO2 solutions is accompanied by a pH increase within seconds. In solutions of tailored homo- and AB diblock copolymers this is exploited to induce micelle formation, or, taking advantage of an aqueous upper critical solution temperature transition, nanoparticle disassembly.

11.
Soft Matter ; 10(31): 5787-96, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24975501

RESUMO

The direct synthesis of methacrylic-based soft polymeric nanoparticles via reversible addition-fragmentation chain transfer dispersion polymerization (RAFTDP) is described. The use of poly[2-(dimethylamino)ethyl methacrylate]s, of varying average degree of polymerization (X¯n), as the stabilizing blocks for the RAFTDP of 3-phenylpropyl methacrylate (PPMA) in ethanol at 70 °C, at various total solids contents, yielded the full spectrum of self-assembled nanoparticles (spherical and worm aggregates and polymersomes). We also demonstrate that nanoparticle morphology can be tuned simply by controlling temperature. This is especially evident in the case of worm aggregates undergoing a thermoreversible transition to spherical species - a process that is accompanied by a macroscopic degelation-gelation process.

12.
Macromol Rapid Commun ; 35(8): 813-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24497380

RESUMO

Well-defined poly[pentafluorophenyl (meth)acrylate] (PPFP(M)A) homopolymers are prepared by RAFT radical polymerization mediated by a novel chain transfer agent containing two cholesteryl groups in the R-group fragment. Subsequent reaction with a series of small-molecule amines in the presence of an appropriate Michael acceptor for ω-group end-capping yields a library of novel bischolesteryl functional hydrophilic homopolymers. Two examples of statistical copolymers are also prepared including a biologically relevant sugar derivative. Specific examples of these homopolymers are examined with respect to their ability to self assemble in aqueous media-a process driven entirely by the cholesteryl end groups. In all instances evaluated, and under the preparation conditions examined, the homopolymers aggregate clearly forming polymersomes spanning an impressive size range.


Assuntos
Radicais Livres/química , Metacrilatos/química , Polímeros/química , Soluções/química , Aminas/química , Microscopia Eletrônica de Varredura , Modelos Químicos , Estrutura Molecular , Polimerização , Polímeros/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Macromol Rapid Commun ; 32(15): 1123-43, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21567648

RESUMO

Reversible addition fragmentation chain transfer (RAFT) polymerization is one of the most extensively studied reversible deactivation radical polymerization methods for the production of well-defined polymers. After polymerization, the RAFT agent end-group can easily be converted into a thiol, opening manifold opportunities for thiol modification reactions. This review is focused both on the introduction of functional end-groups using well-established methods, such as thiol-ene chemistry, as well as on creating bio-cleavable disulfide linkages via disulfide exchange reactions. We demonstrate that thiol modification is a highly attractive and efficient chemistry for modifying RAFT polymers.


Assuntos
Química Orgânica/métodos , Polímeros/síntese química , Compostos de Sulfidrila/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Polimerização , Polímeros/química
14.
Chem Commun (Camb) ; 47(4): 1318-20, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21082076

RESUMO

In this communication, we report on a new route to the functionalization of ATRP polymers exploiting their halide end-groups, which were converted successfully into reactive disulfide end-groups, using sodium methanethiosulfonate. The resultant disulfide-terminated polymers could then be reacted with different functional thiols to yield functional polymers exploiting either thiol/disulfide exchange chemistry or thiol/ene "click" reactions.

15.
Biomacromolecules ; 11(9): 2432-9, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20726556

RESUMO

A poly(oligo(ethylene glycol) monomethyl ether methacrylate)-block-poly(N-isopropyl methacrylamide) (POEGMA-b-PNIPMAM) block copolymer with a biotin end group on the PNIPMAM block as a biotarget was synthesized as a model system for temperature-controlled polymer immobilization. The synthesis was based on RAFT polymerization followed by postpolymerization modification of an activated ester precursor block and an exchange of the dithioester end group within one step. NMR, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and turbidimetry measurements were performed to investigate the stimulus-responsive properties. The double thermoresponsive POEGMA-b-PNIPMAM with biotin end group showed a temperature-dependent multistage assembly behavior as it was completely soluble in water at temperatures below the LCST of both blocks, formed micellar structures above the LCST of PNIPMAM but below the LCST of POEGMA, or precipitated from solution above the LCST of both blocks. At room temperature, the polymer could be immobilized onto a streptavidin surface via its biotin end group, as shown in surface plasmon resonance (SPR) experiments. At 50 °C, at which the block copolymer formed micelles trapping the biotin target within the PNIPMAM core, no immobilization was observed, showing that the biological binding ability of the model could be controlled via external stimuli.


Assuntos
Acrilamidas/química , Biotina/química , Micelas , Polímeros/química , Polímeros/síntese química , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética , Polimerização , Estreptavidina/química , Temperatura
16.
Chem Commun (Camb) ; 46(29): 5343-5, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20544097

RESUMO

A new functional bis-acylurea molecule allows a two-stage self-organization process. It self-organizes--at first--into 2D nanosheets with disulfide groups at the surface, which act--in the second stage--as a template for gold nanoparticle arrays.

17.
Biomacromolecules ; 11(1): 238-44, 2010 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-19947639

RESUMO

Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize poly[diethylene glycol monomethylether methacrylate] (PDEGMA) (M(n) = 6250 g/mol, PDI = 1.14) with a pentafluorophenyl (PFP) activated ester and a dithioester end group. The hormone thyroxin (T4) was quantitatively attached to the PFP activated ester alpha end group via its amino group. The omega-terminal dithioester was not harmed by this reaction and was subsequently aminolyzed in the presence of N-biotinylaminoethyl methanethiosulfonate, yielding a polymer with a thyroxin and a biotin end group with very high heterotelechelic functionality. The polymer was characterized by (1)H, (13)C, and (19)F NMR, UV-vis, and IR spectroscopy and gel permeation chromatography. The thyroxin transport protein prealbumin with two thyroxin binding sites and streptavidin, which has four biotin binding sites, was conjugated using the biotarget labeled polymer, resulting in the formation of a protein-polymer network, confirming the heterotelechelic nature of the polymer. Polymer-protein microgel formation was observed with dynamic light scattering. To realize a directed protein assembly, prealbumin was immobilized onto a surface, exposing one of its two thyroxin binding groups and thus allowing the conjugation with the thyroxin alpha end group of the heterotelechelic polymer. The biotin omega end group of the attached polymer layer enabled the subsequent immobilization of streptavidin, yielding a defined multilayer system of two proteins connected with the synthetic polymer (efficiency of streptavidin immobilization 81% based on prealbumin). Without the polymer, no streptavidin immobilization occurred. The layer depositions were monitored by surface plasmon resonance. The synthetic approach of combining PFP activated esters with functional MTS reagents presents a powerful method for obtaining well-defined heterotelechelic (bio-) functionalized polymers.


Assuntos
Metacrilatos/química , Polímeros/química , Polímeros/síntese química , Proteínas/química , Estreptavidina/química , Tiroxina/química , Biotina/análogos & derivados , Biotina/química , Espectroscopia de Ressonância Magnética , Ressonância de Plasmônio de Superfície
18.
Langmuir ; 25(17): 10068-76, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19572510

RESUMO

The key designing in reliable biosensors is the preparation of thin films in which biomolecular functions may be immobilized and addressed in a controlled and reproducible manner. This requires the controlled preparation of specific binding sites on planar surfaces. Poly(methylsilsesquioxane)-poly(pentafluorophenyl acrylates) (PMSSQ-PFPA) are promising materials to produce stable and adherent thin reactive coatings on various substrates. Those reactive surface coatings could be applied onto various materials, for example, gold, polycarbonate (PC), poly(tetrafluoroethylene) (PTFE), and glass. By dipping those substrates in a solution of a desired amine, specific binding sites for protein adsorption could be immobilized on the surface. The versatile strategy allowed the attachment of various linkers, for example, biotin, l-thyroxine, and folic acid. The adsorption processes of streptavidin, pre-albumin, and folate-binding protein were monitored using surface plasmon resonance (SPR), Fourier transform infrared (FTIR) spectroscopy, fluorescence spectroscopy, and atomic force microscopy (AFM). The presented protein immobilization strategy, consisting of four steps (a) spin-coating of PMSSQ-PFPA hybrid polymer from tetrahydrofuran (THF) solution, (b) annealing at 130 degrees C for 2 h to induce thermal cross-linking of the PMSSQ part, (c) surface analogues reaction with different amino-functionalized specific binding sites for proteins, and (d) controlled assembly of proteins on the surface, may find various applications in future biosensor design.


Assuntos
Compostos de Organossilício/química , Proteínas/química , Compostos de Amônio Quaternário/química , Amidas/química , Biotina/química , Biotinilação , Furanos/química , Vidro , Microscopia de Força Atômica/métodos , Modelos Químicos , Cimento de Policarboxilato/química , Polímeros/química , Politetrafluoretileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura
19.
Macromol Rapid Commun ; 30(14): 1274-8, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-21638382

RESUMO

The synthesis of poly(methyl methacrylate) (PMMA) exhibiting one fluorescent dye (Texas Red) and one methyl disulfide end group is described. It is shown that the latter end group enabled the exchange of both oleic amine on gold nanoparticles (AuNP) and of oleic acid on CdSe/ZnS quantum dots (QD), allowing for a phase transfer of both types of nanoparticles (NP) from hexane into dimethylformamide due to the solubility provided by the PMMA chains. For AuNP, a fluorescence quenching of the dye was found due to fluorescence resonance energy transfer (FRET) from the dye to the AuNP, while QDs caused a fluorescence enhancement by FRET from the QD to the attached dyes. Due to the hetero-telechelic geometry of the polymer, the separation between NP and dye is governed by the end-to-end distance of the polymer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA