Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38946979

RESUMO

Ribosome heterogeneity has emerged as an important regulatory control feature for determining which proteins are synthesized, however, the influence of age on ribosome heterogeneity is not fully understood. Whether mRNA transcripts are selectively translated in young versus old cells and whether dysregulation of this process drives organismal aging is unknown. Here we examined the role of ribosomal RNA (rRNA) methylation in maintaining appropriate translation as organisms age. In a directed RNAi screen, we identified the 18S rRNA N6'-dimethyl adenosine (m6,2A) methyltransferase, dimt-1, as a regulator of C. elegans lifespan and stress resistance. Lifespan extension induced by dimt-1 deficiency required a functional germline and was dependent on the known regulator of protein translation, the Rag GTPase, raga-1, which links amino acid sensing to the mechanistic target of rapamycin complex (mTORC)1. Using an auxin-inducible degron tagged version of dimt-1, we demonstrate that DIMT-1 functions in the germline after mid-life to regulate lifespan. We further found that knock-down of dimt-1 leads to selective translation of transcripts important for stress resistance and lifespan regulation in the C. elegans germline in mid-life including the cytochrome P450 daf-9, which synthesizes a steroid that signals from the germline to the soma to regulate lifespan. We found that dimt-1 induced lifespan extension was dependent on the daf-9 signaling pathway. This finding reveals a new layer of proteome dysfunction, beyond protein synthesis and degradation, as an important regulator of aging. Our findings highlight a new role for ribosome heterogeneity, and specific rRNA modifications, in maintaining appropriate translation later in life to promote healthy aging.

2.
Proc Natl Acad Sci U S A ; 121(28): e2309244121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968115

RESUMO

DNA is organized into chromatin-like structures that support the maintenance and regulation of genomes. A unique and poorly understood form of DNA organization exists in chloroplasts, which are organelles of endosymbiotic origin responsible for photosynthesis. Chloroplast genomes, together with associated proteins, form membrane-less structures known as nucleoids. The internal arrangement of the nucleoid, molecular mechanisms of DNA organization, and connections between nucleoid structure and gene expression remain mostly unknown. We show that Arabidopsis thaliana chloroplast nucleoids have a unique sequence-specific organization driven by DNA binding to the thylakoid membranes. DNA associated with the membranes has high protein occupancy, has reduced DNA accessibility, and is highly transcribed. In contrast, genes with low levels of transcription are further away from the membranes, have lower protein occupancy, and have higher DNA accessibility. Membrane association of active genes relies on the pattern of transcription and proper chloroplast development. We propose a speculative model that transcription organizes the chloroplast nucleoid into a transcriptionally active membrane-associated core and a less active periphery.


Assuntos
Arabidopsis , Cloroplastos , Tilacoides , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Tilacoides/metabolismo , Tilacoides/genética , Tilacoides/ultraestrutura , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcrição Gênica , DNA de Cloroplastos/genética , DNA de Cloroplastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA