RESUMO
Tuberculosis remains a major health threat globally and a more effective vaccine than the current Bacillus Calmette Guerin (BCG) is required, either to replace or boost it. The Spore-FP1 mucosal vaccine candidate is based on the fusion protein of Ag85B-Acr-HBHA/heparin-binding domain, adsorbed on the surface of inactivated Bacillus subtilis spores. The candidate conferred significant protection against Mycobacterium. tuberculosis challenge in naïve guinea pigs and markedly improved protection in the lungs and spleens of animals primed with BCG. We then immunized rhesus macaques with BCG intradermally, and subsequently boosted with one intradermal and one aerosol dose of Spore-FP1, prior to challenge with low dose aerosolized M. tuberculosis Erdman strain. Following vaccination, animals did not show any adverse reactions and displayed higher antigen specific cellular and antibody immune responses compared to BCG alone but this did not translate into significant improvement in disease pathology or bacterial burden in the organs.
Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Cobaias , Animais , Vacina BCG , Macaca mulatta , Antígenos de Bactérias , Tuberculose/prevenção & controle , EsporosRESUMO
Tuberculosis (TB) and sarcoidosis are both granulomatous diseases. Here, we compared the immunological microenvironments of granulomas from TB and sarcoidosis patients using in situ sequencing (ISS) transcriptomic analysis and multiplexed immunolabeling of tissue sections. TB lesions consisted of large necrotic and cellular granulomas, whereas "multifocal" granulomas with macrophages or epitheloid cell core and a T-cell rim were observed in sarcoidosis samples. The necrotic core in TB lesions was surrounded by macrophages and encircled by a dense T-cell layer. Within the T-cell layer, compact B-cell aggregates were observed in most TB samples. These B-cell clusters were vascularized and could contain defined B-/T-cell and macrophage-rich areas. The ISS of 40-60 immune transcripts revealed the enriched expression of transcripts involved in homing or migration to lymph nodes, which formed networks at single-cell distances in lymphoid areas of the TB lesions. Instead, myeloid-annotated regions were enriched in CD68, CD14, ITGAM, ITGAX, and CD4 mRNA. CXCL8 and IL1B mRNA were observed in granulocytic areas in which M. tuberculosis was also detected. In line with ISS data indicating tertiary lymphoid structures, immune labeling of TB sections expressed markers of high endothelial venules, follicular dendritic cells, follicular helper T cells, and lymph-node homing receptors on T cells. Neither ISS nor immunolabeling showed evidence of tertiary lymphoid aggregates in sarcoidosis samples. Together, our finding suggests that despite their heterogeneity, the formation of tertiary immune structures is a common feature in granulomas from TB patients.
Assuntos
Mycobacterium tuberculosis , Sarcoidose Pulmonar , Sarcoidose , Tuberculose , Humanos , Granuloma , Sarcoidose Pulmonar/genética , Sarcoidose Pulmonar/patologia , Pulmão/patologia , RNA MensageiroRESUMO
Diabetes mellitus (DM) increases the risk of developing tuberculosis (TB), but the mechanisms behind diabetes-TB comorbidity are still undefined. Here, we studied the role of hypoxia-inducible factor-1 (HIF-1), a main regulator of metabolic and inflammatory responses, in the outcome of Mycobacterium tuberculosis infection of bone marrow-derived macrophages (BMM). We observed that M. tuberculosis infection of BMM increased the expression of HIF-1α and HIF-1-regulated genes. Treatment with the hypoxia mimetic deferoxamine (DFO) further increased levels of HIF-1-regulated immune and metabolic molecules and diminished the intracellular bacterial load in BMM and in the lungs of infected mice. The expression of HIF-1-regulated immunometabolic genes was reduced, and the intracellular M. tuberculosis levels were increased in BMM incubated with high-glucose levels or with methylglyoxal (MGO), a reactive carbonyl compound elevated in DM. In line with the in vitro findings, high M. tuberculosis levels and low HIF-1-regulated transcript levels were found in the lungs from hyperglycemic Leprdb/db compared with wild-type mice. The increased intracellular M. tuberculosis growth and the reduced expression of HIF-1-regulated metabolic and inflammatory genes in BMM incubated with MGO or high glucose were reverted by additional treatment with DFO. Hif1a-deficient BMM showed ablated responses of immunometabolic transcripts after mycobacterial infection at normal or high-glucose levels. We propose that HIF-1 may be targeted for the control of M. tuberculosis during DM. IMPORTANCE People living with diabetes who are also infected with M. tuberculosis are more likely to develop tuberculosis disease (TB). Why diabetic patients have an increased risk for developing TB is not well understood. Macrophages, the cell niche for M. tuberculosis, can express microbicidal mechanisms or be permissive to mycobacterial persistence and growth. Here, we showed that high glucose and carbonyl stress, which mediate diabetes pathogenesis, impair the control of intracellular M. tuberculosis in macrophages. Infection with M. tuberculosis stimulated the expression of genes regulated by the transcription factor HIF-1, a major controller of the responses to hypoxia, resulting in macrophage activation. High glucose and carbonyl compounds inhibited HIF-1 responses by macrophages. Mycobacterial control in the presence of glucose or carbonyl stress was restored by DFO, a compound that stabilizes HIF-1. We propose that HIF-1 can be targeted to reduce the risk of developing TB in people with diabetes.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Mycobacterium tuberculosis/fisiologia , Fator 1 Induzível por Hipóxia/metabolismo , Aldeído Pirúvico/metabolismo , Desferroxamina/farmacologia , Desferroxamina/metabolismo , Óxido de Magnésio/metabolismo , Tuberculose/microbiologia , Macrófagos/microbiologia , Hipóxia/metabolismo , Glucose/metabolismoRESUMO
The hypoxia-inducible factors (HIFs) regulate the main transcriptional pathway of response to hypoxia in T cells and are negatively regulated by von Hippel-Lindau factor (VHL). But the role of HIFs in the regulation of CD4 T cell responses during infection with M. tuberculosis isn't well understood. Here we show that mice lacking VHL in T cells (Vhl cKO) are highly susceptible to infection with M. tuberculosis, which is associated with a low accumulation of mycobacteria-specific T cells in the lungs that display reduced proliferation, altered differentiation and enhanced expression of inhibitory receptors. In contrast, HIF-1 deficiency in T cells is redundant for M. tuberculosis control. Vhl cKO mice also show reduced responses to vaccination. Further, VHL promotes proper MYC-activation, cell-growth responses, DNA synthesis, proliferation and survival of CD4 T cells after TCR activation. The VHL-deficient T cell responses are rescued by the loss of HIF-1α, indicating that the increased susceptibility to M. tuberculosis infection and the impaired responses of Vhl-deficient T cells are HIF-1-dependent.
Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Tuberculose , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Camundongos , Linfócitos T/imunologia , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/prevenção & controle , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/imunologiaRESUMO
Mycobacterium tuberculosis (Mtb) bacilli are the causative agent of tuberculosis (TB), a major killer of mankind. Although it is widely accepted that local interactions between Mtb and the immune system in the tuberculous granuloma determine whether the outcome of infection is controlled or disseminated, these have been poorly studied due to methodological constraints. We have recently used a spatial transcriptomic technique, in situ sequencing (ISS), to define the spatial distribution of immune transcripts in TB mouse lungs. To further contribute to the understanding of the immune microenvironments of Mtb and their local diversity, we here present two complementary automated bacteria-guided analysis pipelines. These position 33 ISS-identified immune transcripts in relation to single bacteria and bacteria clusters. The analysis was applied on new ISS data from lung sections of Mtb-infected C57BL/6 and C3HeB/FeJ mice. In lungs from C57BL/6 mice early and late post infection, transcripts that define inflammatory macrophages were enriched at subcellular distances to bacteria, indicating the activation of infected macrophages. In contrast, expression patterns associated to antigen presentation were enriched in non-infected cells at 12 weeks post infection. T-cell transcripts were evenly distributed in the tissue. In Mtb-infected C3HeB/FeJ mice, transcripts characterizing activated macrophages localized in apposition to small bacteria clusters, but not in organized granulomas. Despite differences in the susceptibility to Mtb, the transcript patterns found around small bacteria clusters of C3HeB/FeJ and C57BL/6 mice were similar. Altogether, the presented tools allow us to characterize in depth the immune cell populations and their activation that interact with Mtb in the infected lung.
Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Animais , Granuloma/metabolismo , Pulmão , Macrófagos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
The infection by Trypanosoma brucei brucei (T.b.b.), a protozoan parasite, is characterized by an early-systemic stage followed by a late stage in which parasites invade the brain parenchyma in a T cell-dependent manner. Here we found that early after infection effector-memory T cells were predominant among brain T cells, whereas, during the encephalitic stage T cells acquired a tissue resident memory phenotype (TRM) and expressed PD1. Both CD4 and CD8 T cells were independently redundant for the penetration of T.b.b. and other leukocytes into the brain parenchyma. The role of lymphoid cells during the T.b.b. infection was studied by comparing T- and B-cell deficient rag1-/- and WT mice. Early after infection, parasites located in circumventricular organs, brain structures with increased vascular permeability, particularly in the median eminence (ME), paced closed to the sleep-wake regulatory arcuate nucleus of the hypothalamus (Arc). Whereas parasite levels in the ME were higher in rag1-/- than in WT mice, leukocytes were instead reduced. Rag1-/- infected mice showed increased levels of meca32 mRNA coding for a blood /hypothalamus endothelial molecule absent in the blood-brain-barrier (BBB). Both immune and metabolic transcripts were elevated in the ME/Arc of WT and rag1-/- mice early after infection, except for ifng mRNA, which levels were only increased in WT mice. Finally, using a non-invasive sleep-wake cycle assessment method we proposed a putative role of lymphocytes in mediating sleep alterations during the infection with T.b.b. Thus, the majority of T cells in the brain during the early stage of T.b.b. infection expressed an effector-memory phenotype while TRM cells developed in the late stage of infection. T cells and parasites invade the ME/Arc altering the metabolic and inflammatory responses during the early stage of infection and modulating sleep disturbances.
Assuntos
Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/parasitologia , Subpopulações de Linfócitos T/fisiologia , Trypanosoma brucei brucei , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/patologia , Animais , Encéfalo/parasitologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Memória Imunológica , Leucócitos , Camundongos , Camundongos Knockout , SonoRESUMO
The suppressor of cytokine signaling 3 (SOCS3) is a major regulator of immune responses and inflammation as it negatively regulates cytokine signaling. Here, the role of SOCS3 in thymic T cell formation was studied in Socs3fl/flActin-creER mice (Δsocs3) with a tamoxifen inducible and ubiquitous Socs3 deficiency. Δsocs3 thymi showed a 90% loss of cellularity and altered cortico-medullary organization. Thymocyte differentiation and proliferation was impaired at the early double negative (CD4-CD8-) cell stage and apoptosis was increased during the double positive (CD4+CD8+) cell stage, resulting in the reduction of recent thymic emigrants in peripheral organs. Using bone marrow chimeras, transplanting thymic organoids and using mice deficient of SOCS3 in thymocytes we found that expression in thymic stromal cells rather than in thymocytes was critical for T cell development. We found that SOCS3 in thymic epithelial cells (TECs) binds to the E3 ubiquitin ligase TRIM 21 and that Trim21-/- mice showed increased thymic cellularity. Δsocs3 TECs showed alterations in the expression of genes involved in positive and negative selection and lympho-stromal interactions. SOCS3-dependent signal inhibition of the common gp130 subunit of the IL-6 receptor family was redundant for T cell formation. Together, SOCS3 expression in thymic stroma cells is critical for T cell development and for maintenance of thymus architecture.
Assuntos
Diferenciação Celular/imunologia , Células Estromais/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Camundongos , Células Estromais/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Timo/metabolismoRESUMO
Specific T cell responses are central for protection against infection with M. tuberculosis. Here we show that mycobacteria-specific CD4 and CD8 T cells accumulated in the lung but not in the mediastinal lymph node (MLN) at different time points after M. tuberculosis infection or BCG immunization. Proliferating specific T cells were found in the lung after infection and immunization. Pulmonary, but not MLN-derived CD4 and CD8 T cells, from M. tuberculosis-infected mice secreted IFN-γ after stimulation with different mycobacterial peptides. Mycobacteria-specific resident memory CD4 and CD8 T cells (TRM) expressing PD-1 accumulated in the lung after aerosol infection and intratracheal (i.t.) -but not subcutaneous (s.c.)- BCG immunization. Chemical inhibition of recirculation indicated that TRM were generated in the lung after BCG i.t. immunization. In summary, mycobacteria specific-TRM accumulate in the lung during i.t. but not s.c. immunization or M. tuberculosis infection. Collectively our data suggests that priming, accumulation and/or expansion of specific T cells during BCG immunization and M. tuberculosis infection occurs in the lung.
Assuntos
Vacina BCG/administração & dosagem , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Administração por Inalação , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunização , Injeções Subcutâneas , Pulmão/imunologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos Endogâmicos C57BL , MucosaRESUMO
TRIM21 is an interferon-stimulated E3 ligase that controls the activity of pattern-recognition signaling via ubiquitination of interferon regulatory factors and DDX41. Previous studies on the role of TRIM21 in innate immune responses have yielded contradictory results, suggesting that the role of TRIM21 is cell specific. Here, we report that bone-marrow-derived macrophages (BMDMs) generated from Trim21-/- mice have reduced expression of mature macrophage markers. Reflecting their reduced differentiation in response to macrophage colony-stimulating factor (M-CSF), Trim21-/- BMDMs had decreased expression of M-CSF signature genes. Although Trim21-/- BMDMs responded normally to Toll-like receptor 9 (TLR9) activation, they produced lower levels of pro-inflammatory cytokines in response to the TLR2 agonist PAM3CSK4. In line with this, the response to infection with the Bacillus Calmette-Guérin strain of Mycobacterium bovis was also diminished in Trim21-/- BMDMs. Our results indicate that TRIM21 controls responses to TLR2 agonists.
Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Ribonucleoproteínas/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Interações Hospedeiro-Patógeno , Lipopeptídeos/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , Fenótipo , Ribonucleoproteínas/deficiência , Ribonucleoproteínas/genética , Transdução de Sinais , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genéticaRESUMO
Granulomas are the pathological hallmark of tuberculosis (TB) and the niche where bacilli can grow and disseminate or the immunological microenvironment in which host cells interact to prevent bacterial dissemination. Here we show 34 immune transcripts align to the morphology of lung sections from Mycobacterium tuberculosis-infected mice at cellular resolution. Colocalizing transcript networks at <10 µm in C57BL/6 mouse granulomas increase complexity with time after infection. B-cell clusters develop late after infection. Transcripts from activated macrophages are enriched at subcellular distances from M. tuberculosis. Encapsulated C3HeB/FeJ granulomas show necrotic centers with transcripts associated with immunosuppression (Foxp3, Il10), whereas those in the granuloma rims associate with activated T cells and macrophages. We see highly diverse networks with common interactors in similar lesions. Different immune landscapes of M. tuberculosis granulomas depending on the time after infection, the histopathological features of the lesion, and the proximity to bacteria are here defined.
Assuntos
Linfócitos B/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculoma/imunologia , Tuberculose Pulmonar/imunologia , Animais , Linfócitos B/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/isolamento & purificação , RNA Mensageiro/isolamento & purificação , Fatores de Tempo , Tuberculoma/microbiologia , Tuberculoma/patologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologiaRESUMO
Thiol-dependent enzymes, including the thioredoxin (Trx) and glutathione (GSH) systems, have recently been found as promising bactericidal targets in multidrug-resistant (MDR) bacteria. We previously discovered that silver acted synergistically with ebselen in the inhibition of the Trx system and also resulted in a fast depletion of GSH in Gram-negative bacteria. Silver has been found by others to improve the sensitivity of bacteria to certain conventional antibiotics. Here, we found that the synergistic antibacterial effects of silver with four conventional antibiotics was correlated with the blockage of bacterial Trx system by silver. The synergistic antibacterial effect came along with the production of reactive oxygen species. All these results suggested that silver primarily enhanced the bactericidal activities of conventional antibiotics towards Gram-negative strains through the upregulation of ROS production.
Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Prata/farmacologia , Tiorredoxinas/antagonistas & inibidores , Antibacterianos/química , Azóis/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Glutationa/antagonistas & inibidores , Glutationa/genética , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/patogenicidade , Humanos , Isoindóis , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Compostos Organosselênicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/genéticaRESUMO
STAT3 is a master regulator of the immune responses. Here we show that M. tuberculosis-infected stat3fl/fl lysm cre mice, defective for STAT3 in myeloid cells, contained lower bacterial load in lungs and spleens, reduced granuloma extension but higher levels of pulmonary neutrophils. STAT3-deficient macrophages showed no improved control of intracellular mycobacterial growth. Instead, protection associated to elevated ability of stat3fl/fl lysm cre antigen-presenting cells (APCs) to release IL-6 and IL-23 and to stimulate IL-17 secretion by mycobacteria-specific T cells. The increased IL-17 secretion accounted for the improved control of infection since neutralization of IL-17 receptor A in stat3fl/fl lysm cre mice hampered bacterial control. APCs lacking SOCS3, which inhibits STAT3 activation via several cytokine receptors, were poor inducers of priming and of the IL-17 production by mycobacteria-specific T cells. In agreement, socs3fl/fl cd11c cre mice deficient of SOCS3 in DCs showed increased susceptibility to M. tuberculosis infection. While STAT3 in APCs hampered IL-17 responses, STAT3 in mycobacteria-specific T cells was critical for IL-17 secretion, while SOCS3 in T cells impeded IL-17 secretion. Altogether, STAT3 signalling in myeloid cells is deleterious in the control of infection with M. tuberculosis.
Assuntos
Mycobacterium tuberculosis/imunologia , Células Mieloides/metabolismo , Fator de Transcrição STAT3/genética , Linfócitos T/imunologia , Tuberculose/imunologia , Animais , Células Cultivadas , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Tuberculose/genética , Tuberculose/metabolismoRESUMO
Circumventricular organs (CVOs), neural structures located around the third and fourth ventricles, harbor, similarly to the choroid plexus, vessels devoid of a blood-brain barrier (BBB). This enables them to sense immune-stimulatory molecules in the blood circulation, but may also increase chances of exposure to microbes. In spite of this, attacks to CVOs by microbes are rarely described. It is here highlighted that CVOs and choroid plexus can be infected by pathogens circulating in the bloodstream, providing a route for brain penetration, as shown by infections with the parasites Trypanosoma brucei. Immune responses elicited by pathogens or systemic infections in the choroid plexus and CVOs are briefly outlined. From the choroid plexus trypanosomes can seed into the ventricles and initiate accelerated infiltration of T cells and parasites in periventricular areas. The highly motile trypanosomes may also enter the brain parenchyma from the median eminence, a CVO located at the base of the third ventricle, by crossing the border into the BBB-protected hypothalamic arcuate nuclei. A gate may, thus, be provided for trypanosomes to move into brain areas connected to networks of regulation of circadian rhythms and sleep-wakefulness, to which other CVOs are also connected. Functional imbalances in these networks characterize human African trypanosomiasis, also called sleeping sickness. They are distinct from the sickness response to bacterial infections, but can occur in common neuropsychiatric diseases. Altogether the findings lead to the question: does the neglect in reporting microbe attacks to CVOs reflect lack of awareness in investigations or of gate-opening capability by microbes?
Assuntos
Encéfalo/imunologia , Órgãos Circunventriculares/imunologia , Sistema Nervoso/imunologia , Trypanosoma brucei brucei/imunologia , Tripanossomíase Africana/imunologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/parasitologia , Encéfalo/parasitologia , Plexo Corióideo/imunologia , Plexo Corióideo/parasitologia , Órgãos Circunventriculares/parasitologia , Humanos , Modelos Neurológicos , Sistema Nervoso/parasitologia , Parasitos/imunologia , Parasitos/fisiologia , Trypanosoma brucei brucei/fisiologia , Tripanossomíase Africana/parasitologiaRESUMO
Children in the Bolivian Andes are exposed to endemic infections and meager nourishment, and live under poor hygienic conditions. The prevention of children malnutrition is a priority in many countries including Bolivia. In this study, the health status of schoolchildren in Taraco, a Puna district, at 4,000 meters above sea level (masl) and in Caranavi, at 650 masl in the wealthier subtropical valleys, was compared. The weight, height, and hematological and biochemical parameters in blood, parasites in stool, and clinical information in 120 children from rural Taraco and in 96 from semi-urban Caranavi, both predominantly of Aymara ethnicity, were registered. Eleven percent of Taraco children were undernourished compared with 3% in Caranavi. Instead, 41% of the children in Caranavi were obese or overweight, compared with 8% in Taraco. Anemia was found in 74% of the children in Taraco compared with 7% in Caranavi. Albumin levels were normal in all samples, albeit lower in Taraco. Similar and normal serum zinc levels were measured in both groups. Approximately 60% of the children in both locations showed insufficient vitamin D levels, with lower levels in Taraco children. Hymenolepis nana and Entamoeba coli, parasites determinant of poor hygienic conditions, were respectively detected in 78% and 21% of fecal samples from Taraco, and in 29% and 8% of samples from Caranavi. We show increased anemia, nutritional deficiencies, and indications of poor hygienic conditions in highlands compared with lowlands. The prevalence of obesity in the lowlands demands addressing diverse nutritional deficiencies in the regions of Bolivia.
Assuntos
Saúde da Criança/estatística & dados numéricos , Nível de Saúde , Estado Nutricional , Fatores Etários , Altitude , Estatura , Peso Corporal , Bolívia/epidemiologia , Criança , Transtornos da Nutrição Infantil/epidemiologia , Fezes/microbiologia , Fezes/parasitologia , Feminino , Humanos , Masculino , Inquéritos Nutricionais , Obesidade Infantil/epidemiologia , Albumina Sérica/análise , Fatores Sexuais , Deficiência de Vitamina D/epidemiologia , Zinco/deficiênciaRESUMO
CISH gene has been associated with increased susceptibility to human tuberculosis. We found that cish-/- mice had higher M. tuberculosis load in spleens and lungs up to 2.5 weeks after infection but not later compared to controls. Cish mRNA levels were increased in lungs at early and late time points after M. tuberculosis infection. In relation, the titers of inos and tnf mRNA in lungs were reduced early after infection of cish-/- mice. The transfer of cish-/- and control T cells conferred rag1-/- mice similar protection to infection with M. tuberculosis. Macrophages showed increased cish mRNA levels after M. tuberculosis infection in vitro. However, mycobacterial uptake and growth in cish-/- and control macrophages was similar. Thus, we here show that CISH mediates control of M. tuberculosis in mice early after infection via regulation of innate immune mechanisms.
Assuntos
Pulmão/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Tuberculose Pulmonar/metabolismo , Animais , Carga Bacteriana , Modelos Animais de Doenças , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Imunidade Inata , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Proteínas Supressoras da Sinalização de Citocina/deficiência , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Tempo , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Multidrug-resistant (MDR) Gram-negative bacteria account for a majority of fatal infections, and development of new antibiotic principles and drugs is therefore of outstanding importance. Here, we report that five most clinically difficult-to-treat MDR Gram-negative bacteria are highly sensitive to a synergistic combination of silver and ebselen. In contrast, silver has no synergistic toxicity with ebselen on mammalian cells. The silver and ebselen combination causes a rapid depletion of glutathione and inhibition of the thioredoxin system in bacteria. Silver ions were identified as strong inhibitors of Escherichia coli thioredoxin and thioredoxin reductase, which are required for ribonucleotide reductase and DNA synthesis and defense against oxidative stress. The bactericidal efficacy of silver and ebselen was further verified in the treatment of mild and acute MDR E. coli peritonitis in mice. These results demonstrate that thiol-dependent redox systems in bacteria can be targeted in the design of new antibacterial drugs. The silver and ebselen combination offers a proof of concept in targeting essential bacterial systems and might be developed for novel efficient treatments against MDR Gram-negative bacterial infections.
Assuntos
Antibacterianos/administração & dosagem , Azóis/administração & dosagem , Sinergismo Farmacológico , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Compostos Organosselênicos/administração & dosagem , Peritonite/tratamento farmacológico , Prata/administração & dosagem , Animais , Antibacterianos/farmacologia , Azóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Infecções por Escherichia coli/microbiologia , Isoindóis , Camundongos , Compostos Organosselênicos/farmacologia , Oxirredução , Peritonite/microbiologia , Prata/farmacologia , Compostos de Sulfidrila/metabolismoRESUMO
The transcription factor Foxp3 dominantly controls regulatory T (Treg) cell function, and only its continuous expression guarantees the maintenance of full Treg cell-suppressive capacity. However, transcriptional regulators maintaining Foxp3 transcription are incompletely described. Here, we report that high E47 transcription factor activity in Treg cells resulted in unstable Foxp3 expression. Under homeostatic conditions, Treg cells expressed high levels of the E47 antagonist Id3, thus restricting E47 activity and maintaining Foxp3 expression. In contrast, stimulation of Id3-deficient or E47-overexpressing Treg cells resulted in the loss of Foxp3 expression in a subset of Treg cells in vivo and in vitro. Mechanistic analysis indicated that E47 activated expression of the transcription factor Spi-B and the suppressor of cytokine signaling 3 (SOCS3), which both downregulated Foxp3 expression. These findings demonstrate that the balance of Id3 and E47 controls the maintenance of Foxp3 expression in Treg cells and, thus, contributes to Treg cell plasticity.
Assuntos
Fatores de Transcrição Forkhead/genética , Proteínas Inibidoras de Diferenciação/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Linfócitos T Reguladores/metabolismo , Fator 3 de Transcrição/genética , Animais , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , CamundongosRESUMO
Conditional gene targeting using the bacteriophage-derived Cre recombinase is widely applied for functional gene studies in mice. Mice transgenic for Cre under the control of the lck gene promoter are used to study the role of loxP-targeted genes in T cell development and function. In this article, we show a striking 65% reduction in cellularity, preferential development of γδ versus αß T cells, and increased expression of IL-7R in the thymus of mice expressing Cre under the proximal lck promoter (lck-cre(+) mice). The transition from CD4/CD8 double-negative to double-positive cells was blocked, and lck-cre(+) double-positive cells were more prone to apoptosis and showed higher levels of Cre expression. Importantly, numbers of naive T cells were reduced in spleens and lymph nodes of lck-cre(+) mice. In contrast, frequencies of γδ T cells, CD44(+)CD62L(-) effector T cells, and Foxp3(+) regulatory T cells were elevated, as was the frequency of IFN-γ-secreting CD4(+) and CD8(+) T cells. A literature survey of 332 articles that used lck-cre(+) mice for deletion of floxed genes indicated that results are statistically influenced by the control used (lck-cre(+) or lck-cre(-)), more frequently resembling the lck-cre(+) phenotype described in this article if lck-cre(-) controls were used. Altogether, care should be taken when interpreting published results and to properly control targeted gene deletions using the lck-cre(+) strain.