Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(7): 11457-11470, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155780

RESUMO

We report the numerical and experimental study of probe pulse deformation in a forward-pumped distributed Raman amplifier on a 40-km standard single mode fiber. Distributed Raman amplification can improve the range of OTDR-based sensing systems, but it could result in pulse deformation. A smaller Raman gain coefficient can be used to mitigate pulse deformation. The sensing performance can still be maintained by compensating for the decrease in the Raman gain coefficient by increasing the pump power. The tunability of the Raman gain coefficient and pump power levels are predicted while keeping the probe power below the modulation instability limit.

2.
Materials (Basel) ; 16(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36984202

RESUMO

Silicon carbide (SiC) has become a promising optical material for quantum photonics and nonlinear photonics during the past decade. In this work, we propose two methods to improve the 4H-SiC thin film quality for SiC integrated photonic chips. Firstly, we develop a wet-oxidation-assisted chemical mechanical polishing (CMP) process for 4H-SiC, which can significantly decrease the surface roughness from 3.67 nm to 0.15 nm, thus mitigating the light scattering loss. Secondly, we find that the thermal annealing of the 4H-SiC devices at 1300 °C can help to decrease the material absorption loss. We experimentally demonstrate that the wet-oxidation-assisted CMP and the high-temperature annealing can effectively increase the intrinsic quality factor of the 4H-SiC optical microring resonators.

3.
Opt Express ; 30(8): 12474-12483, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472882

RESUMO

We demonstrate the use of the electrooptic effect to control the propagation constant of the guided modes in silicate few mode fibers with internal electrodes. The electrooptic effect induces a perturbation of the fiber's refractive index profile that controls intermodal interference. To increase the electrooptic effect the silicate fibers are poled. The response time is in the nanosecond range.

4.
Opt Lett ; 47(1): 38-41, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951877

RESUMO

Higher-order mode converters that work over a broad wavelength range are needed for various applications. A new, to the best of our knowledge, simple and cost-effective LP02 mode converter is fabricated by tapering a bundle of single-mode fibers. The device excites the LP02 mode in a four-mode step index fiber with a mode purity higher than 10 dB. The polarization-dependent cross talk of the device is measured using the S2 technique. The LP02 mode selectivity of the device is measured over the entire C and L bands by selectively launching different modes into the device using a spatial light modulator.

5.
Opt Express ; 29(2): 1140-1146, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726335

RESUMO

Methods for measurement of polarization dependent loss and cross talk of individual few mode fiber components and connected systems are presented. A new method for determining the cross talk of the individual components, from the measurements on the connected system is presented and verified through simulations and measurements. The method is based on Fourier analysis of the wavelength dependent interference of the loss of the system.

6.
Opt Express ; 27(9): 13329-13343, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052859

RESUMO

We have fabricated an air-cladded mode-group selective photonic lantern, which can (de)multiplex the first two mode groups of a standard two-mode step-index fiber. Instead of relying on a low-index capillary tube, our simple solution uses air to form the surrounding "cladding" and thereby enable guiding at the end of the taper. Characterization of a 25-mm long lantern taper results in multiplexing crosstalk values between -20 dB and -12 dB for both modal inputs. The de-multiplexing values were around -12 dB for the fundamental mode, and slightly higher for the first higher-order (LP11) mode. Microscopic imaging of a taper cross section having a width of 30 µm reveals the presence of an uncollapsed airhole in the structure between the three fibers. The impact of such an airhole is numerically investigated using an eigenmode expansion method based on a full-vectorial mode solver, and is found to play an important role in assuring a more adiabatic mode conversion through the taper.

7.
Opt Express ; 26(16): 20225-20232, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30119335

RESUMO

Simultaneous MIMO-free transmission of 12 orbital angular momentum (OAM) modes over a 1.2 km air-core fiber is demonstrated. WDM compatibility of the system is shown by using 60, 25 GHz spaced WDM channels with 10 GBaud QPSK signals. System performance is evaluated by measuring bit error rates, which are found to be below the soft FEC limit, and limited by inter-modal crosstalk. The crosstalk in the system is analyzed, and it is concluded that it can be significantly reduced with an improved multiplexer and de-multiplexer.

8.
Science ; 360(6386): 285-291, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29519918

RESUMO

The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies.

9.
Sci Rep ; 7(1): 12459, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963480

RESUMO

Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.

10.
Opt Express ; 25(17): 20835-20849, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041761

RESUMO

We model the spectral quantum-mechanical purity of heralded single photons from a photon-pair source based on nondegenerate spontaneous four-wave mixing taking the impact of distributed dispersion fluctuations into account. The considered photon-pair-generation scheme utilizes pump-pulse walk-off to produce pure heralded photons and phase matching is achieved through the dispersion properties of distinct spatial modes in a few-mode silica step-index fiber. We show that fiber-core-radius fluctuations in general severely impact the single-photon purity. Furthermore, by optimizing the fiber design we show that generation of single photons with very high spectral purity is feasible even in the presence of large core-radius fluctuations. At the same time, contamination from spontaneous Raman scattering is greatly mitigated by separating the single-photon frequency by more than 32 THz from the pump frequency.

11.
Opt Lett ; 42(18): 3670-3673, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914929

RESUMO

We derive from Maxwell's equations full-vectorial nonlinear propagation equations of four-wave mixing valid in straight semiconductor-on-insulator waveguides. Special attention is given to the resulting effective mode area, which takes a convenient form known from studies in photonic crystal fibers, but has not been introduced in the context of integrated waveguides. We show that the difference between our full-vectorial effective mode area and the scalar equivalent often referred to in the literature may lead to mistakes when evaluating the nonlinear refractive index and optimizing designs of new waveguides. We verify the results of our derivation by comparing it to experimental measurements in a silicon-on-insulator waveguide, taking tolerances on fabrication parameters into account.

12.
Opt Express ; 25(5): 5521-5535, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380811

RESUMO

We demonstrate a flexible cross-correlated (C2) imaging method in the time domain by application of a tunable and highly flexible light source. An advantage of the flexible C2 method is shown by characterization of the step-index fiber (SMF28) over a broad range of wavelengths from 870nm to 1090nm and by the modal analysis of the distributed modal filtering (DMF) rod fiber within a wavelength range from 1050nm to 1090nm. Also, the influence of the spectral shape and bandwidth on the imaging trace is investigated by deliberately adjusting the input spectrum of the light source. The modal intensity as well as the phase distribution are extracted by the alternative method of 2D FT filtering. Being exceptionally tunable the flexible C2 method gives an ability to adapt the system's parameters in a desired manner satisfying even measurements of very specific fiber designs opening up new possibilities for advanced modal characterization of fibers over broad range of wavelengths.

13.
Opt Express ; 25(7): 7324-7337, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380856

RESUMO

Four-wave mixing in the form of Bragg scattering (BS) has been predicted to enable quantum noise-less frequency conversion by analytic quantum approaches. Using a semi-classical description of quantum noise that accounts for loss and stimulated and spontaneous Raman scattering, which are not currently described in existing quantum approaches, we quantify the impacts of these effects on the conversion efficiency and on the quantum noise properties of BS in terms of an induced noise figure (NF). We give an approximate closed-form expression for the BS conversion efficiency that includes loss and stimulated Raman scattering, and we derive explicit expressions for the Raman-induced NF from the semi-classical approach used here. We find that Raman scattering induces a NF in the BS process that is comparable to the 3-dB NF associated with linear amplifiers.

14.
Sci Rep ; 6: 36756, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004821

RESUMO

Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

15.
Opt Express ; 24(21): 23969-23976, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828230

RESUMO

We suggest a new scheme to create chirped microbend long period gratings. Employing this scheme, the bandwidth of mode conversion between LP01 to LP11 is increased 4.8-fold with a conversion efficiency of 20 dB. This scheme includes a first time demonstration of a non-linearly chirped long period grating. The scheme is investigated both numerically using coupled mode equations as well as experimentally.

16.
Sci Rep ; 6: 34693, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703272

RESUMO

Mode-division multiplexing has the potential to further increase data transmission capacity through optical fibers. In addition, distributed Raman amplification is a promising candidate for multi-mode signal amplification due to its desirable noise properties and the possibility of mode-equalized gain. In this paper, we present an experimental characterization of the intermodal Raman intensity overlaps of a few-mode fiber using backward-pumped Raman amplification. By varying the input pump power and the degree of higher order mode-excitation for the pump and the signal in a 10 km long two-mode fiber, we are able to characterize all intermodal Raman intensity overlaps. Using these results, we perform a Raman amplification measurement and demonstrate a mode-differential gain of only 0.25 dB per 10 dB overall gain. This is, to the best of our knowledge, the lowest mode differential gain achieved for amplification of mode division multiplexed signals in a single fiber.

17.
Opt Lett ; 40(20): 4583-6, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469569

RESUMO

The increasing use of few-mode fibers for high-speed optical communication systems in space division multiplexing has created a need for mode resolved characterization of few-mode fibers. In this Letter, we present a new method to characterize the bend loss of the individual modes in a few-mode fiber. This procedure uses a simple setup for spatially and spectrally resolved imaging and allows the measurement of the bend loss of each and every guided mode at once. It does not require the use of mode converters in contrast to other methods. Results for graded-index two- and four-mode fibers are presented, together with comparisons against direct bend-loss measurements for the four-mode and standard single-mode fibers.

18.
Appl Opt ; 53(26): 5977-84, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25321678

RESUMO

In this work, we present an analytic model for analyzing the range and frequency dependency of a monostatic coherent lidar measuring velocities of a diffuse target. The model of the signal power spectrum includes both the contribution from the optical system as well as the contribution from the time dependencies of the optical field. A specific coherent Doppler wind lidar system measuring wind velocity in the atmosphere is considered, in which a Gaussian field is transmitted through a simple telescope consisting of a lens and an aperture. The effects of the aperture size, the beam waist position, and pulse duration are analyzed.

19.
Opt Express ; 22(10): 11861-8, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921307

RESUMO

We investigate Bessel-like modes guided in a double cladding fiber where the outer cladding is an aircladding. For very high order LP(0X) -modes, the azimuthal symmetry is broken and the mode is no longer linearly polarized. This is observed experimentally and confirmed numerically. The effect is investigated numerically using a full vectorial modesolver and is observed to be dependent on the fiber design. The effect on the diffraction free propagation distance of the modes is investigated using a fast Fourier transform propagation routine and compared to the properties of an ideal circularly symmetric mode. The free space properties of modes suffering from break up of azimuthal symmetry are also investigated experimentally by measuring the free space propagation of a LP(016)-mode excited in the double cladding fiber.

20.
Opt Express ; 21(22): 25944-53, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216820

RESUMO

We report the first experimental demonstration of parametric amplification and all-optical phase-preserving amplitude regeneration for a 640 Gbit/s return-to-zero (RZ) differential phase-shift keying (DPSK) optical time division multiplexed (OTDM) signal. In the designed gain-flattened single-pump fiber optical parametric amplifier (FOPA), 620 fs short optical pulses are successfully amplified with 15 dB gain with error-free performance and less than 1 dB power penalty. Phase-preserving amplitude regeneration based on gain saturation in the FOPA is carried out for optical signals with degraded optical signal-to-noise ratio. An improvement of 2.2 dB in receiver sensitivity at a bit-error-ratio of 10(-9) has been successfully achieved after regeneration, together with 13.3 dB net gain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA