Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(46): 15236-15242, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34762405

RESUMO

In multiple myeloma (MM) disease, malignant plasma cells produce excessive quantities of a monoclonal immunoglobulin (Ig), known as M-protein. M-protein levels are measured in the serum of patients with MM using electrophoresis techniques to determine the response to treatment. However, therapeutic monoclonal antibodies, such as isatuximab, may confound signals using electrophoresis assays. We developed a robust assay based on immunocapture and liquid chromatography coupled to high-resolution mass spectrometry (IC-HPLC-HRMS) in order to eliminate this interference. Following immunocapture of Ig and free light chains (LC) in serum, heavy chains (HC) and LC were dissociated using dithiothreitol, sorted by liquid chromatography and analyzed using HRMS (Q-Orbitrap). This method allowed the M-proteins to be characterized and the signals from isatuximab and M-proteins to be discriminated. As M-protein is specific to each patient, no standards were available for absolute quantification. We therefore used alemtuzumab (an IgG kappa mAb) as a surrogate analyte for the semiquantification of M-protein in serum. This assay was successfully validated in terms of selectivity/specificity, accuracy/precision, robustness, dilution linearity, and matrix variability from 10.0 to 200 µg/mL in human serum. This method was used for clinical assessment of samples and eliminated potential interference due to isatuximab when monitoring patients with MM.


Assuntos
Anticorpos Monoclonais , Imunoglobulinas/sangue , Mieloma Múltiplo/diagnóstico , Anticorpos Monoclonais Humanizados , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Espectrometria de Massas
3.
Thromb Haemost ; 105(4): 696-705, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21301779

RESUMO

Pharmacokinetic analyses of clopidogrel are hampered by the existence of multiple active metabolite isomers (H1 to H4) and their instability in blood. We sought to retest the pharmacodynamic activities of the four individual active metabolite isomers in vitro, with the ultimate aim of determining the isomers responsible for clopidogrel activity in vivo. In vitro activity was evaluated by measuring binding of [³³P]-2-methylthio-ADP on P2Y12-expressing Chinese hamster ovary (CHO) cells and human platelets in platelet-rich plasma (PRP). A stereoselective method that used reverse-phase ultra high-performance liquid chromatography (UHPLC) and tandem mass spectrometry (MS) was developed to measure individual concentrations of the stable 3'-methoxyacetophenone (MP) derivatives of H1-H4. The new method was used to analyze plasma samples from clopidogrel-treated subjects enrolled in a phase I clinical trial. In vitro binding assays confirmed the previously observed biological activity of H4 (IC50: CHO-P2Y12: 0.12 µM; PRP: 0.97 µM) and inactivity of H3, and demonstrated that H1 was also inactive. Furthermore, H2 demonstrated approximately half of the biological activity in vitro compared with H4. Optimisation of UHPLC conditions and MS collision parameters allowed the resolution and detection of the four derivatised active metabolite isomers (MP-H1 to MP-H4). The stereoselective assay was extensively validated, and was accurate and precise over the concentration range 0.5-250 ng/ml. Only MP-H3 and MP-H4 were quantifiable in incurred clinical samples. Based on in vitro pharmacodynamic data and found concentrations, the active metabolite isomer H4 is the only diastereoisomer of clinical relevance for documenting the pharmacokinetic profile of the active metabolite of clopidogrel.


Assuntos
Plaquetas/metabolismo , Plasma/citologia , Receptores Purinérgicos P2Y12/metabolismo , Ticlopidina/análogos & derivados , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Animais , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Células CHO , Cromatografia Líquida de Alta Pressão , Clopidogrel , Cricetinae , Cricetulus , Humanos , Espectrometria de Massas , Isótopos de Fósforo/química , Plasma/química , Vigilância de Produtos Comercializados/métodos , Ligação Proteica/efeitos dos fármacos , Receptores Purinérgicos P2Y12/genética , Sensibilidade e Especificidade , Estereoisomerismo , Tionucleotídeos/química , Tionucleotídeos/metabolismo , Ticlopidina/análise , Ticlopidina/química , Ticlopidina/farmacologia , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA