Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Invest Radiol ; 59(5): 391-403, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812494

RESUMO

OBJECTIVES: A novel clinically translatable iron oxide nanoparticle (IOP) is currently being tested in phase 2 clinical trials as a magnetic resonance imaging (MRI) contrast agent for hepatocellular carcinoma diagnosis. The purpose of our study is to evaluate if this IOP can detect activation of tumor-associated macrophages (TAMs) due to CD47 mAb-targeted immunotherapy in 2 mouse models of osteosarcoma. MATERIALS AND METHODS: The toxicity, biodistribution, and pharmacokinetics of IOP were evaluated in 77 female and 77 male rats. Then, 24 female BALB/c mice with intratibial murine K7M2 tumors and 24 female NOD scid gamma mice with intratibial human 143B osteosarcoma xenografts were treated with either CD47 mAb (n = 12) or control antibody (n = 12). In each treatment group, 6 mice underwent MRI scans before and after intravenous infusion of either IOP or ferumoxytol (30 mg Fe/kg). Tumor T2* values and TAM markers F4/80, CD80, CD206, and Prussian blue staining were compared between different experimental groups using exact 2-sided Wilcoxon rank sum tests. RESULTS: Biodistribution and safety evaluations of IOP were favorable for doses of less than 50 mg Fe/kg body weight in female and male rats. Both IOP and ferumoxytol caused negative enhancement (darkening) of the tumor tissue. Both murine and human osteosarcoma tumors treated with CD47 mAb demonstrated significantly shortened T2* relaxation times after infusion of IOP or ferumoxytol compared with controls (all P 's < 0.05). Higher levels of F4/80 + CD80 + were found in murine and human osteosarcomas treated with CD47 mAb compared with sham-treated controls (all P 's < 0.05). In addition, murine CD47 mAb-treated tumors after infusion of either IOP or ferumoxytol showed significantly higher numbers of Prussian blue-positive cells compared with controls ( P < 0.05). There was no significant difference of F4/80 + CD206 + cells among any of the groups (all P 's > 0.05). CONCLUSIONS: Iron oxide nanoparticle-enhanced MRI can be used to diagnose CD47 mAb-mediated TAM-activation in osteosarcomas.


Assuntos
Neoplasias Ósseas , Ferrocianetos , Neoplasias Hepáticas , Osteossarcoma , Humanos , Camundongos , Masculino , Feminino , Ratos , Animais , Óxido Ferroso-Férrico , Antígeno CD47 , Distribuição Tecidual , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/terapia , Osteossarcoma/patologia , Meios de Contraste , Imunoterapia , Imageamento por Ressonância Magnética/métodos , Neoplasias Ósseas/patologia , Nanopartículas Magnéticas de Óxido de Ferro
2.
DNA Cell Biol ; 43(2): 74-84, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153368

RESUMO

The effector proteins of several pathogenic bacteria contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif or other similar motifs. The EPIYA motif is delivered into the host cells by type III and IV secretion systems, through which its tyrosine residue undergoes phosphorylation by host kinases. These motifs atypically interact with a wide range of Src homology 2 (SH2) domain-containing mammalian proteins through tyrosine phosphorylation, which leads to the perturbation of multiple signaling cascades, the spread of infection, and improved bacterial colonization. Interestingly, it has been reported that EPIYA (or EPIYA-like) motifs exist in mammalian proteomes and regulate mammalian cellular-signaling pathways, leading to homeostasis and disease pathophysiology. It is possible that pathogenic bacteria have exploited EPIYA (or EPIYA-like) motifs from mammalian proteins and that the mammalian EPIYA (or EPIYA-like) motifs have evolved to have highly specific interactions with SH2 domain-containing proteins. In this review, we focus on the regulation of mammalian cellular-signaling pathways by mammalian proteins containing these motifs.


Assuntos
Bactérias , Proteínas de Bactérias , Animais , Proteínas de Bactérias/química , Motivos de Aminoácidos , Fosforilação , Transdução de Sinais , Tirosina/metabolismo , Mamíferos/metabolismo
3.
Sci Rep ; 13(1): 21721, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066050

RESUMO

Analyzing different omics data types independently is often too restrictive to allow for detection of subtle, but consistent, variations that are coherently supported based upon different assays. Integrating multi-omics data in one model can increase statistical power. However, designing such a model is challenging because different omics are measured at different levels. We developed the iNETgrate package ( https://bioconductor.org/packages/iNETgrate/ ) that efficiently integrates transcriptome and DNA methylation data in a single gene network. Applying iNETgrate on five independent datasets improved prognostication compared to common clinical gold standards and a patient similarity network approach.


Assuntos
Metilação de DNA , Software , Humanos , Redes Reguladoras de Genes , Expressão Gênica
4.
Res Sq ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645739

RESUMO

Integrating multi-omics data in one model can increase statistical power. However, designing such a model is challenging because different omics are measured at different levels. We developed the iNETgrate package (https://bioconductor.org/packages/iNETgrate/) that efficiently integrates transcriptome and DNA methylation data in a single gene network. Applying iNETgrate on five independent datasets improved prognostication compared to common clinical gold standards and a patient similarity network approach.

5.
J Vis Exp ; (195)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37318243

RESUMO

T2* relaxometry is one of the established methods to measure the effect of superparamagnetic iron oxide nanoparticles on tumor tissues with magnetic resonance imaging (MRI). Iron oxide nanoparticles shorten the T1, T2, and T2* relaxation times of tumors. While the T1 effect is variable based on the size and composition of the nanoparticles, the T2 and T2* effects are usually predominant, and T2* measurements are the most time-efficient in a clinical context. Here, we present our approach to measuring tumor T2* relaxation times, using multi-echo gradient echo sequences, external software, and a standardized protocol for creating a T2* map with scanner-independent software. This facilitates the comparison of imaging data from different clinical scanners, different vendors, and co-clinical research work (i.e., tumor T2* data obtained in mouse models and patients). Once the software is installed, the T2 Fit Map plugin needs to be installed from the plugin manager. This protocol provides step-by-step procedural details, from importing the multi-echo gradient echo sequences into the software, to creating color-coded T2* maps and measuring tumor T2* relaxation times. The protocol can be applied to solid tumors in any body part and has been validated based on preclinical imaging data and clinical data in patients. This could facilitate tumor T2* measurements for multi-center clinical trials and improve the standardization and reproducibility of tumor T2* measurements in co-clinical and multi-center data analyses.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Camundongos , Animais , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Software , Nanopartículas Magnéticas de Óxido de Ferro
6.
Tomography ; 9(3): 995-1009, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37218941

RESUMO

Preclinical imaging is a critical component in translational research with significant complexities in workflow and site differences in deployment. Importantly, the National Cancer Institute's (NCI) precision medicine initiative emphasizes the use of translational co-clinical oncology models to address the biological and molecular bases of cancer prevention and treatment. The use of oncology models, such as patient-derived tumor xenografts (PDX) and genetically engineered mouse models (GEMMs), has ushered in an era of co-clinical trials by which preclinical studies can inform clinical trials and protocols, thus bridging the translational divide in cancer research. Similarly, preclinical imaging fills a translational gap as an enabling technology for translational imaging research. Unlike clinical imaging, where equipment manufacturers strive to meet standards in practice at clinical sites, standards are neither fully developed nor implemented in preclinical imaging. This fundamentally limits the collection and reporting of metadata to qualify preclinical imaging studies, thereby hindering open science and impacting the reproducibility of co-clinical imaging research. To begin to address these issues, the NCI co-clinical imaging research program (CIRP) conducted a survey to identify metadata requirements for reproducible quantitative co-clinical imaging. The enclosed consensus-based report summarizes co-clinical imaging metadata information (CIMI) to support quantitative co-clinical imaging research with broad implications for capturing co-clinical data, enabling interoperability and data sharing, as well as potentially leading to updates to the preclinical Digital Imaging and Communications in Medicine (DICOM) standard.


Assuntos
Metadados , Neoplasias , Animais , Camundongos , Humanos , Reprodutibilidade dos Testes , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagem , Padrões de Referência
7.
Theranostics ; 13(8): 2710-2720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215574

RESUMO

Rationale: Efficient labeling methods for mesenchymal stem cells (MSCs) are crucial for tracking and understanding their behavior in regenerative medicine applications, particularly in cartilage defects. MegaPro nanoparticles have emerged as a potential alternative to ferumoxytol nanoparticles for this purpose. Methods: In this study, we employed mechanoporation to develop an efficient labeling method for MSCs using MegaPro nanoparticles and compared their effectiveness with ferumoxytol nanoparticles in tracking MSCs and chondrogenic pellets. Pig MSCs were labeled with both nanoparticles using a custom-made microfluidic device, and their characteristics were analyzed using various imaging and spectroscopy techniques. The viability and differentiation capacity of labeled MSCs were also assessed. Labeled MSCs and chondrogenic pellets were implanted into pig knee joints and monitored using MRI and histological analysis. Results: MegaPro-labeled MSCs demonstrated shorter T2 relaxation times, higher iron content, and greater nanoparticle uptake compared to ferumoxytol-labeled MSCs, without significantly affecting their viability and differentiation capacity. Post-implantation, MegaPro-labeled MSCs and chondrogenic pellets displayed a strong hypointense signal on MRI with considerably shorter T2* relaxation times compared to adjacent cartilage. The hypointense signal of both MegaPro- and ferumoxytol-labeled chondrogenic pellets decreased over time. Histological evaluations showed regenerated defect areas and proteoglycan formation with no significant differences between the labeled groups. Conclusion: Our study demonstrates that mechanoporation with MegaPro nanoparticles enables efficient MSC labeling without affecting viability or differentiation. MegaPro-labeled cells show enhanced MRI tracking compared to ferumoxytol-labeled cells, emphasizing their potential in clinical stem cell therapies for cartilage defects.


Assuntos
Doenças das Cartilagens , Transplante de Células-Tronco Mesenquimais , Nanopartículas , Animais , Suínos , Óxido Ferroso-Férrico , Células-Tronco , Cartilagem , Imageamento por Ressonância Magnética/métodos , Diferenciação Celular , Transplante de Células-Tronco Mesenquimais/métodos , Rastreamento de Células/métodos
8.
Tomography ; 9(2): 657-680, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36961012

RESUMO

The availability of high-fidelity animal models for oncology research has grown enormously in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are studies on patients that are carried out parallel to or sequentially with animal models of cancer that mirror the biology of the patients' tumors. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are considered to be the models that best represent human disease and have high translational value. Notably, one element of co-clinical trials that still needs significant optimization is quantitative imaging. The National Cancer Institute has organized a Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical imaging and to optimize translational quantitative imaging methodologies. This overview describes the ten co-clinical trials of investigators from eleven institutions who are currently supported by the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the co-clinical trial design and the challenges encountered are considered. The rich research resources generated by the members of the AMCT Working Group will benefit the broad research community and improve the quality and translational impact of imaging in co-clinical trials.


Assuntos
Neoplasias , Animais , Camundongos , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Neoplasias/patologia , Modelos Animais de Doenças , Diagnóstico por Imagem
9.
Cell Biol Int ; 47(1): 238-249, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36229929

RESUMO

We investigated the transcriptional profile of whole blood in early and metastatic stages of pancreatic cancer (PaC) patients to identify potential diagnostic factors for early diagnosis. Blood samples from 18 participants (6 healthy individuals, 6 patients in early stage (I/II) PaC, and 6 patients in metastatic PaC) were analyzed by RNA-sequencing. The expression levels of identified genes were subsequently compared with their expression in pancreatic tumor tissues based on TCGA data reported in UALCAN and GEPIA2 databases. Overall, 331 and 724 genes were identified as differentially expressed genes in early and metastatic stages, respectively. Of these, 146 genes were shared by early and metastatic stages. Upregulation of PTCD3 and UBA52 genes and downregulation of A2M and ARID1B genes in PaC patients were observed from early stage to metastasis. TCGA database showed increasing trend in expression levels of these genes from stage I to IV in pancreatic tumor tissue. Finally, we found that low expression of PTCD3, A2M, and ARID1B genes and high expression of UBA52 gene were positively correlated with PaC patients survival. We identified a four-gene set (PTCD3, UBA52, A2M, and ARID1B) expressed in peripheral blood of early stage and metastatic PaC patients that may be useful for PaC early diagnosis.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Pâncreas/metabolismo , Regulação para Cima , RNA , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Neoplasias Pancreáticas
10.
Cancers (Basel) ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291929

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide, with non-small-cell lung cancer (NSCLC) being the primary type. Unfortunately, it is often diagnosed at advanced stages, when therapy leaves patients with a dismal prognosis. Despite the advances in genomics and proteomics in the past decade, leading to progress in developing tools for early diagnosis, targeted therapies have shown promising results; however, the 5-year survival of NSCLC patients is only about 15%. Low-dose computed tomography or chest X-ray are the main types of screening tools. Lung cancer patients without specific, actionable mutations are currently treated with conventional therapies, such as platinum-based chemotherapy; however, resistances and relapses often occur in these patients. More noninvasive, inexpensive, and safer diagnostic methods based on novel biomarkers for NSCLC are of paramount importance. In the current review, we summarize genomic and proteomic biomarkers utilized for the early detection and treatment of NSCLC. We further discuss future opportunities to improve biomarkers for early detection and the effective treatment of NSCLC.

11.
Cancers (Basel) ; 14(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35740618

RESUMO

For decades since the central dogma, cancer biology research has been focusing on the involvement of genes encoding proteins. It has been not until more recent times that a new molecular class has been discovered, named non-coding RNA (ncRNA), which has been shown to play crucial roles in shaping the activity of cells. An extraordinary number of studies has shown that ncRNAs represent an extensive and prevalent group of RNAs, including both oncogenic or tumor suppressive molecules. Henceforth, various clinical trials involving ncRNAs as extraordinary biomarkers or therapies have started to emerge. In this review, we will focus on the prognostic and diagnostic role of ncRNAs for breast cancer.

12.
Int Immunopharmacol ; 101(Pt A): 108322, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34735916

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common and fatal malignancies with an alarming trend all around the world. Common therapeutic approaches in the early stage of disease are surgical resection, ablation, and liver transplantation. Due to the insidious identity of HCC, the majority of the patients are diagnosed at advanced stages, where tumor spreading, or distant metastasis unfortunately have already occurred. Immunotherapeutic options have elicited a promising approach in some malignancies with Food and Drug Administration (FDA) approving the first checkpoint inhibitor anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) ipilimumab for the treatment of melanoma ten years ago. In the past decade, many clinical trials have been investigating anti-CTLA-4 as well as anti-programmed cell death protein 1 (PD-1) therapies in various solid tumors, including HCC. In this mini-review we will discuss the latest clinical data from clinical trials for immune-checkpoint inhibitors for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/terapia , Imunoterapia/métodos , Neoplasias Hepáticas/terapia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Hepatocelular/imunologia , Humanos , Neoplasias Hepáticas/imunologia
13.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684792

RESUMO

Importance: The protein p53 is an unequivocal tumor suppressor that is altered in half of all cancers. The immune system produces systemic p53 autoantibodies (p53 Abs) in many cancer patients. Objective: This systemic review and meta-analysis focuses on the prognostic value of p53 Abs expressed in the serum of patients with solid tumors. Data Sources: All the clinical investigations were searched on PubMed from the first study dated 1993 until May 2021 (date of submission of the manuscript). Study Selection: Studies were included that met the following criteria: (1) participants with cancer; (2) outcome results expressed in relation to the presence of a p53 antibody; (3) a primary outcome (disease-free survival, overall survival or progression-free survival) expressed as hazard ratio (HR). The following exclusion criteria were used: (1) insufficient data available to evaluate outcomes; (2) animal studies; (3) studies with less than 10 participants. As a result, 12 studies were included in the analysis. Data Extraction and Synthesis: PRISMA guidelines were used for abstracting and assessing data quality and validity by three independent observers. The summary estimates were generated using a fixed-effect model (Mantel-Haenszel method) or a random-effect model (DerSimonian-Laird method), depending on the absence or presence of heterogeneity (I2). Main Outcome(s) and Measure(s): The primary study outcome was to determine the prognostic value of p53 Abs from a large population of patients with solid tumors, as determined before data collection. Results: In total, 12 clinical studies involving 2094 patients were included in the meta-analysis, and it was determined that p53 Abs expression in the serum significantly correlated with poorer survival outcomes of cancer patients (95% CI 1.48 [1.24, 1.77]; p < 0.00001). Conclusions and Relevance: This is the first meta-analysis proving the diagnostic utility of p53-Abs for cancer patients in predicting poorer outcomes. The serum-p53 value (s-p53-value) may be useful for future theranostics.


Assuntos
Autoanticorpos/sangue , Neoplasias/diagnóstico , Neoplasias/imunologia , Proteína Supressora de Tumor p53/imunologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Feminino , Humanos , Masculino , Mutação , Neoplasias/genética , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida , Proteína Supressora de Tumor p53/genética
14.
Cancers (Basel) ; 13(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809974

RESUMO

Immune checkpoint inhibitors (ICIs) have obtained durable responses in many cancers, making it possible to foresee their potential in improving the health of cancer patients. However, immunotherapies are currently limited to a minority of patients and there is a need to develop a better understanding of the basic molecular mechanisms and functions of pivotal immune regulatory molecules. Immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and regulatory T (Treg) cells play pivotal roles in hindering the anticancer immunity. Treg cells suppress antigen-presenting cells (APCs) by depleting immune stimulating cytokines, producing immunosuppressive cytokines and constitutively expressing CTLA-4. CTLA-4 molecules bind to CD80 and CD86 with a higher affinity than CD28 and act as competitive inhibitors of CD28 in APCs. The purpose of this review is to summarize state-of-the-art understanding of the molecular mechanisms underlining CTLA-4 immune regulation and the correlation of the ICI response with CTLA-4 expression in Treg cells from preclinical and clinical studies for possibly improving CTLA-4-based immunotherapies, while highlighting the knowledge gap.

15.
Immunotherapy ; 13(7): 621-631, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33775103

RESUMO

This study is a meta-analysis of randomized controlled trials involving first-line studies in which immune checkpoint inhibitors were added to chemotherapy and were compared with chemotherapy alone. The primary end point was overall survival (OS). The analyses used random-effects models and the Grading of Recommendations Assessment, Development, and Evaluation system to rate the quality of the evidence. Nine articles were included for qualitative and quantitative synthesis. A meta-analysis of the nine randomized trials showed a significant benefit in terms of OS (hazard ratio: 0.75 [95% CI: 0.66-0.85]; p < 0.01). Only programmed death ligand-1 positive-high cancers derive a significant OS benefit. In this meta-analysis, there is moderate evidence that the addition of immune checkpoint inhibitors to chemotherapy may improve both OS compared with chemotherapy alone.


Lay abstract We provide a meta-analysis of randomized controlled trials in first-line studies where immune checkpoint inhibitors were added to chemotherapy (CT) and were compared with CT alone. Nine articles were included for qualitative and quantitative synthesis. A meta-analysis of the nine randomized trials indicated a significant benefit in terms of overall survival (OS; hazard ratio: 0.75 [95% CI: 0.66­0.85]; p < 0.01). Only programmed death ligand-1 positive-high cancers were observed to receive a significant OS benefit. In this meta-analysis, there is moderate evidence that the addition of immune checkpoint inhibitors to CT may improve OS as compared with CT alone.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Terapia Combinada , Humanos
16.
Mol Cell Oncol ; 7(5): 1788366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944642

RESUMO

Colorectal cancer (CRC) is one of the most important malignancies and causes of cancer-related deaths worldwide. Cancer stem cell markers identification could be helpful to acquire important prognostic information and develop new treatment regimens. This study aimed to evaluate the expression of OCT4 and NANOG in CRC patients and their clinical significance.Totally 359 CRC samples were stained for OCT4 and NANOG expression using tissue microarray. The correlation between their expression and clinical and pathological features was explored.The majority of CRC cases showed low-level expression of OCT4 (80%) and NANOG (75%). Lower expression of OCT4 was more often detected in CRC cases with no vascular involvement (P = .01). Also, a trend found between low level of OCT4 expression and absence of distant metastasis or lymph node involvement (P = .07 and P = .09, respectively). Surprisingly, a significant positive correlation was observed between NANOG expression and cellular differentiation (P = .05). Our combined analysis demonstrated that OCT4 low/NANOG low phenotype has frequently seen in colorectal cancer cases with no vascular invasion (P = .05).Our observations indicated that higher expression of OCT4 and NANOG can confer malignant and aggressive behavior to CRC. Evaluation of the co-expression of these cancer stem cell markers can serve a new diagnostic and prognostic approach in CRC patients. These findings also suggested that simultaneous expression of OCT4 and NANOG can be considered as a therapeutic marker for targeted therapy of CRC, especially in advanced stages.

17.
Cancer Cell Int ; 20: 288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655320

RESUMO

BACKGROUND: At the present time, colorectal cancer (CRC) is still known as a disease with a high mortality rate. Theranostics are flawless scenarios that link diagnosis with therapy, including precision medicine as a critical platform that relies on the development of biomarkers particularly "liquid biopsy". Circulating tumor cells (CTCs) and tumor-derived exosomes (TDEs) in a liquid biopsy approach are of substantial importance in comparison with traditional ones, which cannot generally be performed to determine the dynamics of the tumor due to its wide restriction of range. Thus, recent attempts has shifted towards minimally noninvasive methods. MAIN TEXT: CTCs and TDEs, as significant signals emitted from the tumor microenvironment, which are also detectable in the blood, prove themselves to be promising novel biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of them is still limited, and studies are at its infancy. One of the major challenges for the implementation of CTCs and TDEs which are new trends in translational medicine is the development of isolation and characterization; a standardizable approach. This review highlights and discusses the current challenges to find the bio fluids application in CRC early detection and clinical management. CONCLUSION: Taken together, CTCs and TDEs as silent drivers of metastasis can serve in the management of cancer patient treatment and it is of the upmost importance to expand our insight into this subject. However, due to the limited data available from clinical trials, further validations are required before addressing their putative application in oncology.

18.
J Cell Physiol ; 235(1): 74-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31222740

RESUMO

Multiple modalities for lung cancer therapy have emerged in the past decade, whereas their clinical applications and survival-beneficiary is little known. Vaccination with dendritic cells (DCs) or DCs/cytokine-induced killer (CIK) cells has shown limited success in the treatment of patients with advanced non-small-cell lung cancer. To evaluate and overcome these limitations in further studies, in the present review, we sum up recent progress about DCs or DCs/CIKs-based approaches for preclinical and clinical trials in patients with lung cancer and discuss some of the limited therapeutic success. Moreover, this review highlights the need to focus future studies on the development of new approaches for successful immunotherapy in patients with lung cancer.


Assuntos
Células Matadoras Induzidas por Citocinas , Células Dendríticas , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Humanos
19.
J Oncol ; 2019: 5692317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354820

RESUMO

Metastatic gastric cancer is still a disease with a poor prognosis. Recently, different novel agents (e.g., apatinib, nivolumab, TAS-102) have demonstrated a survival advantage compared with placebo for patients with heavily pretreated metastatic gastric cancer. Although the possible availability of active agents may be a desirable option in a very poor therapeutic scenario, clinical data from the recent studies with these drugs raise yet controversial issues. The purpose of this review is to briefly summarize the results of these novel drugs focusing on the limitations that bring some shadows on their positive therapeutic results.

20.
Future Oncol ; 15(20): 2423-2433, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31237152

RESUMO

Aim: At present three immune checkpoint inhibitors (ICIs), two anti-PD-1 (nivolumab and pembrolizumab) and one anti-PD-L1 (atezolizumab) can be used in pretreated non-small-cell lung cancer patients. The aim of this meta-analysis is an indirect comparison between anti-PD-1 and anti-PD-L1 inhibitors. Methods: Seven studies (>4000 patients) were considered. Results: Considering the overall survival ICIs showed very robust efficacy over docetaxel, while in terms of progression-free survival the therapy with ICIs is slightly favored. Anti-PD-1 gives a more significant benefit than anti-PD-L1; however, excluding the KEYNOTE 010 trial that enrolled only PD-L1-positive patients, the subgroup difference remains only in terms of progression-free survival. Conclusion: This meta-analysis confirms the superiority of ICIs over docetaxel in pretreated non-small-cell lung cancer patients and would indicate a slight benefit from anti-PD-1 than from anti-PD-L1 inhibitors, always keeping in mind the possible biases of this indirect comparison.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Intervalo Livre de Progressão , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA