Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Blood Adv ; 8(1): 112-129, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729615

RESUMO

ABSTRACT: Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.


Assuntos
Antineoplásicos , Leucemia Megacarioblástica Aguda , Humanos , Criança , Pré-Escolar , Animais , Camundongos , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/patologia , Proteômica , Fatores de Transcrição , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Repressoras
4.
Blood Adv ; 6(4): 1329-1341, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34933343

RESUMO

The molecular hallmark of childhood acute lymphoblastic leukemia (ALL) is characterized by recurrent, prognostic genetic alterations, many of which are cryptic by conventional cytogenetics. RNA sequencing (RNA-seq) is a powerful next-generation sequencing technology that can simultaneously identify cryptic gene rearrangements, sequence mutations and gene expression profiles in a single assay. We examined the feasibility and utility of incorporating RNA-seq into a prospective multicenter phase 3 clinical trial for children with newly diagnosed ALL. The Dana-Farber Cancer Institute ALL Consortium Protocol 16-001 enrolled 173 patients with ALL who consented to optional studies and had samples available for RNA-seq. RNA-seq identified at least 1 alteration in 157 patients (91%). Fusion detection was 100% concordant with results obtained from conventional cytogenetic analyses. An additional 56 gene fusions were identified by RNA-seq, many of which confer prognostic or therapeutic significance. Gene expression profiling enabled further molecular classification into the following B-cell ALL (B-ALL) subgroups: high hyperdiploid (n = 36), ETV6-RUNX1/-like (n = 31), TCF3-PBX1 (n = 7), KMT2A-rearranged (KMT2A-R; n = 5), intrachromosomal amplification of chromosome 21 (iAMP21) (n = 1), hypodiploid (n = 1), Philadelphia chromosome (Ph)-positive/Ph-like (n = 16), DUX4-R (n = 11), PAX5 alterations (PAX5 alt; n = 11), PAX5 P80R (n = 1), ZNF384-R (n = 4), NUTM1-R (n = 1), MEF2D-R (n = 1), and others (n = 10). RNA-seq identified 141 nonsynonymous mutations in 93 patients (54%); the most frequent were RAS-MAPK pathway mutations. Among 79 patients with both low-density array and RNA-seq data for the Philadelphia chromosome-like gene signature prediction, results were concordant in 74 patients (94%). In conclusion, RNA-seq identified several clinically relevant genetic alterations not detected by conventional methods, which supports the integration of this technology into front-line pediatric ALL trials. This trial was registered at www.clinicaltrials.gov as #NCT03020030.


Assuntos
Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Perfilação da Expressão Gênica , Rearranjo Gênico , Humanos , Estudos Multicêntricos como Assunto , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estudos Prospectivos
5.
Bone Marrow Transplant ; 56(12): 2981-2989, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34475524

RESUMO

Posttransplant leukemia detection before overt relapse is key to the success of immunotherapeutic interventions, as they are more efficient when leukemia burden is low. However, optimal schedule and monitoring methods are not well defined. We report the intensive bone marrow monitoring of minimal residual disease (MRD) using flow cytometry (FC) and nested reverse transcription polymerase chain reaction (RT-PCR) whenever a fusion transcript allowed it and chimerism by PCR at 11 timepoints in the first 2 years after transplant. Seventy-one transplants were performed in 59 consecutive children, for acute myeloid (n = 38), lymphoid (n = 31), or mixed-phenotype (n = 2) leukemia. MRD was monitored in 62 cases using FC (n = 58) and/or RT-PCR (n = 35). Sixty-seven percent of leukemia recurrences were detected before overt relapse, with a detection rate of 89% by RT-PCR and 40% by FC alone. Increased mixed chimerism was never the first evidence of recurrence. Two patients monitored by RT-PCR relapsed without previous MRD detection, one after missed scheduled evaluation and the other 4.7 years post transplant. Among the 22 cases with MRD detection without overt relapse, 19 received therapeutic interventions. Eight (42%) never relapsed. In conclusion, intensive marrow monitoring by RT-PCR effectively allows for early detection of posttransplant leukemia recurrence.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Quimerismo , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Recidiva , Transplante Homólogo
7.
Nat Biotechnol ; 38(11): 1347-1355, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32541955

RESUMO

New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution and comprehensiveness. To help translate these methods to routine research and clinical practice, we developed a sequence-resolved benchmark set for identification of both false-negative and false-positive germline large insertions and deletions. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle Consortium integrated 19 sequence-resolved variant calling methods from diverse technologies. The final benchmark set contains 12,745 isolated, sequence-resolved insertion (7,281) and deletion (5,464) calls ≥50 base pairs (bp). The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.51 Gbp and 5,262 insertions and 4,095 deletions supported by ≥1 diploid assembly. We demonstrate that the benchmark set reliably identifies false negatives and false positives in high-quality SV callsets from short-, linked- and long-read sequencing and optical mapping.


Assuntos
Mutação em Linhagem Germinativa/genética , Mutação INDEL/genética , Diploide , Variação Estrutural do Genoma , Humanos , Anotação de Sequência Molecular , Análise de Sequência de DNA
8.
Genes Chromosomes Cancer ; 59(2): 125-130, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31515871

RESUMO

Infant acute lymphoblastic leukemias (ALL) are rare hematological malignancies occurring in children younger than 1 year of age, most frequently associated with KMT2A rearrangements (KMT2A-r). The smaller subset without KMT2A-r, which represents 20% of infant ALL cases, is poorly characterized. Here we report two cases of chemotherapy-sensitive non-KMT2A-r infant ALL. Transcriptome analyses revealed identical ACIN1-NUTM1 gene fusions in both cases, derived from cryptic chromosomal rearrangements undetected by standard cytogenetic approaches. Two isoforms of the gene fusion, joining exons 3 or 4 of ACIN1 to exon 3 of NUTM1, were identified. Both fusion transcripts contained the functional DNA-binding SAP (SAF-A/B, Acinus, and PIAS) domain of ACIN1 and most of NUTM1. The detection of the ACIN1-NUTM1 fusion by RT-PCR allowed the molecular monitoring of minimal residual disease in a clinical setting. Based on publicly available genomic datasets and literature review, we predict that NUTM1 gene fusions are recurrent events in infant ALL. As such, we propose two clinically relevant assays to screen for NUTM1 rearrangements in bone marrow cells, independent of the fusion partner: NUMT1 immunohistochemistry and NUTM1 RNA expression. In sum, our study identifies ACIN1-NUTM1 as a recurrent and possibly cryptic fusion in non-KMT2A-r infant ALL, provides clinical tools to screen for NUTM1-rearranged leukemia and contributes to the refinement of this new subgroup.


Assuntos
Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Aberrações Cromossômicas , Citogenética , Fusão Gênica , Rearranjo Gênico/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Imuno-Histoquímica , Recém-Nascido , Leucemia Mieloide Aguda/genética , Masculino , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo
9.
Blood Adv ; 3(21): 3307-3321, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698461

RESUMO

Acute megakaryoblastic leukemia (AMKL) represents ∼10% of pediatric acute myeloid leukemia cases and typically affects young children (<3 years of age). It remains plagued with extremely poor treatment outcomes (<40% cure rates), mostly due to primary chemotherapy refractory disease and/or early relapse. Recurrent and mutually exclusive chimeric fusion oncogenes have been detected in 60% to 70% of cases and include nucleoporin 98 (NUP98) gene rearrangements, most commonly NUP98-KDM5A. Human models of NUP98-KDM5A-driven AMKL capable of faithfully recapitulating the disease have been lacking, and patient samples are rare, further limiting biomarkers and drug discovery. To overcome these impediments, we overexpressed NUP98-KDM5A in human cord blood hematopoietic stem and progenitor cells using a lentiviral-based approach to create physiopathologically relevant disease models. The NUP98-KDM5A fusion oncogene was a potent inducer of maturation arrest, sustaining long-term proliferative and progenitor capacities of engineered cells in optimized culture conditions. Adoptive transfer of NUP98-KDM5A-transformed cells into immunodeficient mice led to multiple subtypes of leukemia, including AMKL, that phenocopy human disease phenotypically and molecularly. The integrative molecular characterization of synthetic and patient NUP98-KDM5A AMKL samples revealed SELP, MPIG6B, and NEO1 as distinctive and novel disease biomarkers. Transcriptomic and proteomic analyses pointed to upregulation of the JAK-STAT signaling pathway in the model AMKL. Both synthetic models and patient-derived xenografts of NUP98-rearranged AMKL showed in vitro therapeutic vulnerability to ruxolitinib, a clinically approved JAK2 inhibitor. Overall, synthetic human AMKL models contribute to defining functional dependencies of rare genotypes of high-fatality pediatric leukemia, which lack effective and rationally designed treatments.


Assuntos
Biomarcadores , Modelos Animais de Doenças , Leucemia Megacarioblástica Aguda/etiologia , Leucemia Megacarioblástica Aguda/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Proteína 2 de Ligação ao Retinoblastoma/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Suscetibilidade a Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Leucemia Megacarioblástica Aguda/terapia , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Nat Med ; 25(10): 1615-1626, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591588

RESUMO

Oncogenesis is driven by germline, environmental and stochastic factors. It is unknown how these interact to produce the molecular phenotypes of tumors. We therefore quantified the influence of germline polymorphisms on the somatic epigenome of 589 localized prostate tumors. Predisposition risk loci influence a tumor's epigenome, uncovering a mechanism for cancer susceptibility. We identified and validated 1,178 loci associated with altered methylation in tumoral but not nonmalignant tissue. These tumor methylation quantitative trait loci influence chromatin structure, as well as RNA and protein abundance. One prominent tumor methylation quantitative trait locus is associated with AKT1 expression and is predictive of relapse after definitive local therapy in both discovery and validation cohorts. These data reveal intricate crosstalk between the germ line and the epigenome of primary tumors, which may help identify germline biomarkers of aggressive disease to aid patient triage and optimize the use of more invasive or expensive diagnostic assays.


Assuntos
Metilação de DNA/genética , Epigenoma/genética , Mutação em Linhagem Germinativa/genética , Neoplasias da Próstata/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano/genética , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Locos de Características Quantitativas/genética
11.
Front Oncol ; 9: 772, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475115

RESUMO

Shwachman-Diamond syndrome (SDS) is a rare and systemic disease mostly caused by mutations in the SBDS gene and characterized by pancreatic insufficiency, skeletal abnormalities, and a bone marrow dysfunction. In addition, SDS patients are predisposed to develop myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), typically during adulthood and associated with TP53 mutations. Although most SDS diagnoses are established in childhood, the nature and frequency of serial bone marrow cell investigations during the patients' lifetime remain a debatable topic. The precise molecular mechanisms leading to AML progression in SDS patients have not been fully elucidated because the patient cohorts are small and most disease monitoring is conducted using standard histological and cytogenetic approaches. Here we report a rare case of a patient with SDS who was diagnosed with AML at 5 years of age and survived. Intermittent neutropenia preceded the AML diagnostic but serial bone marrow monitoring according to the standard of care revealed no cytogenetic anomalies nor signs of clonal hematopoiesis. Using next generation sequencing approaches to find cytogenetically cryptic pathogenic mutations, we identified the cancer hotspot mutation c.394C>T/p.Arg132Cys in IDH1 with high variant allelic frequency in bone marrow cells, suggesting clonal expansion of a major leukemic clone karyotypically normal, in the SDS-associated AML. The mutation was somatic and likely occurred at the leukemic transformation stage, as it was not detected in a matched normal tissue nor in bone marrow smear prior to AML diagnosis. Gain-of-function mutations in IDH1, such as c.394C>T/p.Arg132Cys, create a neo-activity of isocitrate dehydrogenase 1 converting α-ketoglutarate into the oncometabolite D-2-hydroxyglutarate, inhibiting α-ketoglutarate-dependent enzymes, such as histone and DNA demethylases. Overall, our results suggest that along with previously described abnormalities such as TP53 mutations or monosomy7, 7q-, which are all absent in this patient, additional mechanisms including IDH1 mutations drive SDS-related AML and are likely associated with variable outcomes. Sensitive techniques complementary to standard cytogenetics, such as unbiased or targeted panel-based next generation sequencing approaches, warrant testing for monitoring of myelodysplasia, clonal hematopoiesis, and leukemia in the context SDS. Such analyses would also assist treatment decisions and allow to gain insight into the disease biology.

12.
Adv Exp Med Biol ; 1210: 87-110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31900906

RESUMO

Over the last decade, advancements in massively-parallel DNA sequencing and computational biology have allowed for unprecedented insights into the fundamental mutational processes that underlie virtually every major cancer type. Two major cancer genomics consortia-The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC)-have produced rich databases of mutational, pathological, and clinical data that can be mined through web-based portals, allowing for correlative studies and testing of novel hypotheses on well-powered patient cohorts.In this chapter, we will review the impact of these technological developments on the understanding of molecular subtypes that promote prostate cancer initiation, progression, metastasis, and clinical aggression. In particular, we will focus on molecular subtypes that define clinically-relevant patient cohorts and assess how a better understanding of how these subtypes-in both somatic and germline genomes-may influence the clinical course for individual men diagnosed with prostate cancer.


Assuntos
Genoma Humano/genética , Genômica , Mutação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Humanos , Masculino , Neoplasias da Próstata/classificação
13.
J Immunol ; 202(3): 966-978, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567730

RESUMO

T cell development depends on sequential interactions of thymocytes with cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells. PSMB11 is a catalytic proteasomal subunit present exclusively in cTECs. Because proteasomes regulate transcriptional activity, we asked whether PSMB11 might affect gene expression in cTECs. We report that PSMB11 regulates the expression of 850 cTEC genes that modulate lymphostromal interactions primarily via the WNT signaling pathway. cTECs from Psmb11 -/- mice 1) acquire features of medullary thymic epithelial cells and 2) retain CD8 thymocytes in the thymic cortex, thereby impairing phase 2 of positive selection, 3) perturbing CD8 T cell development, and 4) causing dramatic oxidative stress leading to apoptosis of CD8 thymocytes. Deletion of Psmb11 also causes major oxidative stress in CD4 thymocytes. However, CD4 thymocytes do not undergo apoptosis because, unlike CD8 thymocytes, they upregulate expression of chaperones and inhibitors of apoptosis. We conclude that PSMB11 has pervasive effects on both CD4 and CD8 thymocytes via regulation of gene expression in cTECs.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Células Epiteliais/citologia , Complexo de Endopeptidases do Proteassoma/genética , Timócitos/citologia , Animais , Apoptose , Diferenciação Celular , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/imunologia , Timo/imunologia , Via de Sinalização Wnt
14.
Cell ; 173(4): 1003-1013.e15, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681457

RESUMO

The majority of newly diagnosed prostate cancers are slow growing, with a long natural life history. Yet a subset can metastasize with lethal consequences. We reconstructed the phylogenies of 293 localized prostate tumors linked to clinical outcome data. Multiple subclones were detected in 59% of patients, and specific subclonal architectures associate with adverse clinicopathological features. Early tumor development is characterized by point mutations and deletions followed by later subclonal amplifications and changes in trinucleotide mutational signatures. Specific genes are selectively mutated prior to or following subclonal diversification, including MTOR, NKX3-1, and RB1. Patients with low-risk monoclonal tumors rarely relapse after primary therapy (7%), while those with high-risk polyclonal tumors frequently do (61%). The presence of multiple subclones in an index biopsy may be necessary, but not sufficient, for relapse of localized prostate cancer, suggesting that evolution-aware biomarkers should be studied in prospective studies of low-risk tumors suitable for active surveillance.


Assuntos
Neoplasias da Próstata/patologia , Biomarcadores Tumorais/sangue , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Gradação de Tumores , Recidiva Local de Neoplasia , Polimorfismo de Nucleotídeo Único , Modelos de Riscos Proporcionais , Estudos Prospectivos , Neoplasias da Próstata/classificação , Neoplasias da Próstata/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Cell Rep ; 21(9): 2558-2570, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29186691

RESUMO

The sole nonredundant role of the thymic medulla is to induce central tolerance, a vital process that depends on promiscuous gene expression (pGE), a unique feature of medullary thymic epithelial cells (mTECs). Although pGE enhances transcription of >3,000 genes in mTECs, its impact on the regulation of protein homeostasis remains unexplored. Here, we report that, because of pGE, mature mTECs synthesize substantially more proteins than other cell types and are exquisitely sensitive to loss of immunoproteasomes (IPs). Indeed, IP deficiency causes proteotoxic stress in mTECs and leads to exhaustion of postnatal mTEC progenitors. Moreover, IP-deficient mice show accelerated thymic involution, which is characterized by a selective loss of mTECs and multiorgan autoimmune manifestations. We conclude that pGE, the quintessential feature of mTECs, is a major burden for the maintenance of proteostasis, which is alleviated by the constitutive expression of IPs in mTECs.


Assuntos
Células Epiteliais/metabolismo , Homeostase/fisiologia , Animais , Autoimunidade/genética , Autoimunidade/fisiologia , Diferenciação Celular/fisiologia , Feminino , Homeostase/genética , Masculino , Camundongos , Timo/citologia , Timo/metabolismo , Fatores de Transcrição/metabolismo
16.
Sci Rep ; 6: 34019, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27659694

RESUMO

Based on transcriptomic analyses of thousands of samples from The Cancer Genome Atlas, we report that expression of constitutive proteasome (CP) genes (PSMB5, PSMB6, PSMB7) and immunoproteasome (IP) genes (PSMB8, PSMB9, PSMB10) is increased in most cancer types. In breast cancer, expression of IP genes was determined by the abundance of tumor infiltrating lymphocytes and high expression of IP genes was associated with longer survival. In contrast, IP upregulation in acute myeloid leukemia (AML) was a cell-intrinsic feature that was not associated with longer survival. Expression of IP genes in AML was IFN-independent, correlated with the methylation status of IP genes, and was particularly high in AML with an M5 phenotype and/or MLL rearrangement. Notably, PSMB8 inhibition led to accumulation of polyubiquitinated proteins and cell death in IPhigh but not IPlow AML cells. Co-clustering analysis revealed that genes correlated with IP subunits in non-M5 AMLs were primarily implicated in immune processes. However, in M5 AML, IP genes were primarily co-regulated with genes involved in cell metabolism and proliferation, mitochondrial activity and stress responses. We conclude that M5 AML cells can upregulate IP genes in a cell-intrinsic manner in order to resist cell stress.

17.
J Immunol ; 193(3): 1121-32, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24958905

RESUMO

By regulating protein degradation, constitutive proteasomes (CPs) control practically all cellular functions. In addition to CPs, vertebrates express immunoproteasomes (IPs). The major nonredundant role ascribed to IPs is their enhanced ability to generate antigenic peptides. We report that CPs and IPs differentially regulate the expression of >8000 transcripts in maturing mouse dendritic cells (DCs) via regulation of signaling pathways such as IFN regulatory factors, STATs, and NF-κB. IPs regulate the transcription of many mRNAs and maturation of a few of them. Moreover, even when engineered to present optimal amounts of antigenic peptide, IP-deficient DCs are inefficient for in vivo T cell priming. Our study shows that the role of IPs in DCs is not limited to Ag processing and reveals a major nonredundant role for IPs in transcription regulation. The dramatic effect of IPs on the transcriptional landscape could explain the various immune and nonimmune phenotypes observed in vertebrates with IP deficiency or mutations.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Transcriptoma/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Técnicas de Cocultura , Feminino , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcriptoma/genética
18.
PLoS One ; 8(9): e72801, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023776

RESUMO

Both physiological and psychological stress cause thymic atrophy via glucocorticoïd (GC)-dependent apoptosis of double-positive (DP) thymocytes. Given the pervasiveness of stress, GC-induced thymic atrophy is arguably the most common type of acquired immunodeficiency. We recently reported that interleukin-21 (IL-21) has a unique ability to expand the small subset of DP thymocytes (CD69(+)) which are ongoing positive selection, and that administration of IL-21 increases thymic output in aged mice. The goal of this study was to evaluate whether IL-21 could mitigate GC-induced thymic atrophy. In contrast to double-negative (DN) and single-positive (SP) thymocytes, most DP thymocytes (CD69(-)) do not constitutively express the IL-21 receptor (IL-21R). Accordingly, CD69(-) DP thymocytes from PBS-treated mice were unresponsive to IL-21 administration. However, following GC injection, surviving CD69(-) DP thymocytes up-regulated IL-21R and responded to IL-21 treatment as evidenced by enhancement of Bcl6 expression and phosphorylation of STAT1, STAT3 and STAT5. Consequently, IL-21 administration to GC-treated mice accelerated thymic recovery by expanding considerably DP thymocytes and, to a lesser extent, DN thymocytes. However, IL-21-induced expansion of DN/DP thymocytes did not alter the diversity of the intrathymic or peripheral T-cell receptor (TCR) repertoire. We conclude that IL-21 dramatically accelerates recovery from GC-induced thymic atrophy.


Assuntos
Glucocorticoides/farmacologia , Interleucinas/farmacologia , Timócitos/efeitos dos fármacos , Timócitos/metabolismo , Animais , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-21/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo
19.
Blood ; 121(1): 107-17, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23043071

RESUMO

The primary consequence of positive selection is to render thymocytes responsive to cytokines and chemokines expressed in the thymic medulla. In the present study, our main objective was to discover which cytokines could support the differentiation of positively selected thymocytes. To this end, we have developed an in vitro model suitable for high-throughput analyses of positive selection and CD8 T-cell differentiation. The model involves coculture of TCR(hi)CD5(int)CD69(-) double-positive (DP) thymocytes with peptide-pulsed OP9 cells and γc-cytokines. We report that IL-4, IL-7, and IL-21 have nonredundant effects on positively selected DP thymocytes. IL-7 signaling phosphorylates STAT5 and ERK; induces Foxo1, Klf2, and S1pr1; and supports the differentiation of classic CD8 T cells. IL-4 activates STAT6 and ERK and supports the differentiation of CD8(int)PD-L1(hi)CD44(hi)EOMES(+) innate CD8 T cells. IL-21 is produced by thymic epithelial cells and the IL-21 receptor-α is strongly induced on DP thymocytes undergoing positive selection. IL-21 signaling phosphorylates STAT3 and STAT5, but not ERK, and does not support CD8 T-cell differentiation. However, IL-21 has a unique ability to up-regulate BCL-6, expand DP thymocytes undergoing positive selection, and increase the production of mature T cells. Our data suggest that injection of recombinant IL-21 might enhance thymic output in subjects with age- or disease-related thymic atrophy.


Assuntos
Seleção Clonal Mediada por Antígeno/efeitos dos fármacos , Citocinas/fisiologia , Subunidade gama Comum de Receptores de Interleucina/efeitos dos fármacos , Linfopoese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/citologia , Timócitos/citologia , Timo/citologia , Animais , Atrofia , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/farmacologia , Células Epiteliais/metabolismo , Ensaios de Triagem em Larga Escala , Imunocompetência/efeitos dos fármacos , Subunidade gama Comum de Receptores de Interleucina/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/farmacologia , Fatores de Transcrição STAT/metabolismo , Organismos Livres de Patógenos Específicos , Timo/efeitos dos fármacos , Timo/imunologia , Timo/patologia
20.
Int J Cancer ; 130(8): 1755-67, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21618512

RESUMO

Human carcinomas often show resistance to cisplatin and Bcl-2 is associated with resistance to cisplatin. However, Bcl-2 regulation on cisplatin treatment in human cancers is unknown. Here, we show a novel mechanism by which cisplatin treatment promotes resistance by increasing the expression of Bcl-2 mRNA. Bcl-2 mRNA and protein expression was increased in cisplatin-resistant endometrial cancer cell lines (KLE and HEC-1-A), but not in cisplatin-sensitive cell line (Ishikawa). Cisplatin-mediated increase in Bcl-2 expression was blocked by combination with either actinomycin D or cycloheximide. In addition, Bcl-2 inhibition by HA14-1 led to increased cisplatin-induced apoptosis in KLE and HEC-1-A, whereas Bcl-2 overexpression in Ishikawa led to decreased cisplatin-induced apoptosis. Inhibition of protein kinase C (PKC) activity prevented cisplatin-dependant increase in Bcl-2 mRNA, and induced apoptosis in KLE cells. Furthermore, PKC inhibition was associated with decreased Akt and NF-κB activity. Cells stably expressing shRNA for Akt isoforms revealed that Akt2 was involved in cisplatin-dependant increase in Bcl-2 and apoptosis. Overexpression of Akt2 in Akt2-deficient cells led to increased Bcl-2 expression on cisplatin treatment. Our data suggest a novel regulation pathway of Bcl-2 by cisplatin, via the activation of PKC and Akt2, which has a profound impact on resistance to cisplatin-induced apoptosis in endometrial cancer cells.


Assuntos
Cisplatino/farmacologia , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Naftalenos/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA