Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32204, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868044

RESUMO

Milk is a highly nutritious food essential for human consumption. However, traditional thermal processing methods can reduce its nutritional value and cause unwanted changes. The use of shock waves produced by pulsed electromagnetic fields (PEMFs) has been explored as a means to reduce pathogenic microorganisms. The effect of shock wave treatment on microbial load and particle distribution in packaged fresh cow's milk was investigated. Additionally, the impact of shock wave treatment on Salmonella enterica counts in a bacterial suspension of phosphate-buffered saline (PBS) was evaluated, as this bacterium is a significant milkborne pathogen. Treatment with 1000 impulses from an electromagnetic shock wave generator resulted in a 0.7-log reduction in the total bacterial count of milk. In a separate experiment, a 300-impulse shock wave treatment applied to a Salmonella enterica suspension achieved a 3-log reduction in bacterial counts. Furthermore, shock wave treatment resulted in a decrease in milk particle size compared to untreated milk. Notably, the volume of milk used in this study aligns with commercially available packaged products, enhancing the experiment's industrial relevance. The use of PEMF to generate shock waves could provide a novel approach for future studies focused on reducing the microbial load of milk and improving its homogenization.

2.
Food Chem ; 443: 138576, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301556

RESUMO

A novel and effective adsorbent known as Seleno-chitosan-phytic acid nanocomplex (Se-CS-PA) has been developed specifically for efficiently removing patulin (PAT) from a simulated juice solution. The synthesis of Se-CS-PA nanocomplex was confirmed through Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX) analyses. Response surface methodology (RSM) was employed using central composite design (CCD) to examine the impact of four independent variables (PA concentration, amount of nano-complex, duration of interaction between PAT and nano-complex, and initial concentration of PAT) on the removal of PAT. PA concentration of 0.1 % with 2.1 g Se-CS-PA nanocomplex according to RSM polynomial equation and apple juice with 25 µg.L-1 PAT yielded a remarkable adsorption rate of 94.23 % and 87.52 % respectively after 7 h. The process of PAT adsorption was explained using the pseudo-first-order model (R2 = 0.8858) for the kinetic model and the Freundlich isotherm (R2 = 0.9988) for the isotherm model.


Assuntos
Quitosana , Malus , Patulina , Poluentes Químicos da Água , Patulina/análise , Ácido Fítico , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
3.
Foods ; 12(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685115

RESUMO

In recent years, there has been growing interest in bioactive plant compounds for their beneficial effects on health and for their potential in reducing the risk of developing certain diseases such as cancer, cardiovascular diseases, and neurodegenerative disorders. The extraction techniques conventionally used to obtain these phytocompounds, however, due to the use of toxic solvents and high temperatures, tend to be supplanted by innovative and unconventional techniques, in line with the demand for environmental and economic sustainability of new chemical processes. Among non-thermal technologies, cold plasma (CP), which has been successfully used for some years in the food industry as a treatment to improve food shelf life, seems to be one of the most promising solutions in green extraction processes. CP is characterized by its low environmental impact, low cost, and better extraction yield of phytochemicals, saving time, energy, and solvents compared with other classical extraction processes. In light of these considerations, this review aims to provide an overview of the potential and critical issues related to the use of CP in the extraction of phytochemicals, particularly polyphenols and essential oils. To review the current knowledge status and future insights of CP in this sector, a bibliometric study, providing quantitative information on the research activity based on the available published scientific literature, was carried out by the VOSviewer software (v. 1.6.18). Scientometric analysis has seen an increase in scientific studies over the past two years, underlining the growing interest of the scientific community in this natural substance extraction technique. The literature studies analyzed have shown that, in general, the use of CP was able to increase the yield of essential oil and polyphenols. Furthermore, the composition of the phytoextract obtained with CP would appear to be influenced by process parameters such as intensity (power and voltage), treatment time, and the working gas used. In general, the studies analyzed showed that the best yields in terms of total polyphenols and the antioxidant and antimicrobial properties of the phytoextracts were obtained using mild process conditions and nitrogen as the working gas. The use of CP as a non-conventional extraction technique is very recent, and further studies are needed to better understand the optimal process conditions to be adopted, and above all, in-depth studies are needed to better understand the mechanisms of plasma-plant matrix interaction to verify the possibility of any side reactions that could generate, in a highly oxidative environment, potentially hazardous substances, which would limit the exploitation of this technique at the industrial level.

4.
Food Chem ; 424: 136408, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37245469

RESUMO

Betalains are water-soluble nitrogen pigments with beneficial effects, including antioxidant, antimicrobial, and pH-indicator properties. The development of packaging films incorporated with betalains has received increasing attention because of pH-responsive color-changing properties in the colorimetric indicators and smart packaging films. As such, intelligent and active packaging systems based on biodegradable polymers containing betalains have been recently developed as eco-friendly packaging to enhance the quality and safety of food products. Betalains could generally improve the functional properties of packaging films, such as higher water resistance, tensile strength, elongation at break, and antioxidant and antimicrobial activities. These effects are dependent on betalain composition (about its source and extraction), content, and the kind of biopolymer, film preparation method, food samples, and storage time. This review focused on betalains-rich films as pH- and ammonia-sensitive indicators and their applications as smart packaging to monitor the freshness of protein-rich foods such as shrimp, fish, chicken, and milk.


Assuntos
Antioxidantes , Embalagem de Alimentos , Animais , Amônia , Betalaínas , Galinhas , Concentração de Íons de Hidrogênio
5.
Front Nutr ; 9: 880520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571878

RESUMO

Recently, the research and innovation to produce raw materials from microbial processes has gained much attention due to their economic and environmental impacts. Lactic acid is a very important microbial product due to its wide application in the food, pharmaceutical, cosmetic, and chemical industries. In the current study, poly (L-lactic acid) (PLLA) was produced by the ring opening polymerization (ROP) technique of L-lactic acid recovered from whey fermentation, and was used for the production of nanocomposites films reinforced with chitosan nanoparticles (CNPs) (average diameter ca. 100-200 nm). Three different CNPs concentrations, namely 1, 3, and 5% w/w, were tested, and their influence on the physical, mechanical, thermal, antibacterial and structural attributes of PLLA film was assessed. The results showed that the addition of CNPs up to 3% caused a significant improvement in water vapor permeability, appearance, tensile strength and elongation at break. The antibacterial properties of nanocomposites followed a dose-depended pattern as a result of CNPs addition. Therefore, the best inhibitory effects on Escherichia coli and Staphylococcus aureus was made by the addition of 5% of CNPs and lower dosages slightly affected the growth of pathogens or didn't cause any inhibitory effects (in 1% of CNPs). It can be concluded that the incorporation of CNPs into the PLLA matrix allows to improve the structural, thermal, physical, mechanical and antibacterial properties of the polymer, generating promising systems for food packaging and biomedical applications.

6.
Polymers (Basel) ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458378

RESUMO

Anthocyanins are excellent antioxidant/antimicrobial agents as well as pH-sensitive indicators that provide new prospects to foster innovative smart packaging systems due to their ability to improve food shelf life and detect physicochemical and biological changes in packaged food. Compared with anthocyanins from other natural sources, red cabbage anthocyanins (RCAs) are of great interest in food packaging because they represent an acceptable color spectrum over a broad range of pH values. The current review addressed the recent advances in the application of RCAs in smart bio-based food packaging systems and sensors. This review was prepared based on the scientific reports found on Web of Science, Scopus, and Google Scholar from February 2000 to February 2022. The studies showed that the incorporation of RCAs in different biopolymeric films could affect their physical, mechanical, thermal, and structural properties. Moreover, the use of RCAs as colorimetric pH-responsive agents can reliably monitor the qualitative properties of the packaged food products in a real-time assessment. Therefore, the development of smart biodegradable films using RCAs is a promising approach to the prospect of food packaging.

7.
Food Sci Nutr ; 10(3): 945-952, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35311167

RESUMO

The objective of the study was to assess the amount of aflatoxin M1 (AFM1) and aflatoxin B1 (AFB1) during fermentation, drying, and storage of Tarkhineh-a traditional Persian fermented food-over four months. Tarkhineh samples were produced based on a traditional method. Various concentrations of AFB1 (2.5, 5, 7.5, and 10 µg/kg) and AFM1, stood at 0.25, 0.5, 0.75, and 1 µg/kg, were added to Iranian yogurt drink, called doogh, samples. Tarkhineh samples were evaluated for AFB1 and AFM1 on days 0, 2, 6, and 8 and also after drying and four months of storage. In cases of repeatability, recovery, and reproducibility, the high-performance liquid chromatography through fluorescence detector (HPLC-FD) method was successfully done to demonstrate aflatoxins (AFs) in Tarkhineh samples. The fermentation process had a considerable consequence on the reduction in AFM1 and AFB1 as compared to the control group, evidenced by 65.10%-81.20% and 55.80%-74.10%, respectively, after eight days of fermentation (p < .05). The highest reduction in AFB1 existed in samples containing 2.5 µg/kg toxin, followed by 5, 7.5, and 10 µg/kg, respectively. A similar trend was found for AFM1, as the highest concentration was found in samples containing 0.25 µg/kg toxin, followed by 0.5, 0.75, and 1 µg/kg, respectively.

8.
Crit Rev Food Sci Nutr ; 62(7): 1936-1950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33207940

RESUMO

Cold plasma is one of the techniques used in recent years to improve the functionality and interfacial attributes of biopolymers. Employing cold plasma for the treatment and modification of biopolymers possesses several advantages including its biocompatibility, elimination of toxic solvents usage, treatment consistency, and appropriateness for heat-sensitive ingredients. Most studies have presented the efficacious use of cold plasma treatment in improving structural, mechanical and thermal properties of film composites. In addition, cold plasma improves the film surface characteristics, particularly in protein-based films, through bringing up the polar functional groups onto the bio-composite surface, consequently increasing roughness, improving printability, increasing adhesion, and reducing contact angle; while it is not effective in the improvement of water vapor permeability of edible films. Cold plasma-treated edible packaging films experienced significant improvement where exposed to microbial contaminations, mainly due to the non-thermal nature of cold plasma technology leading to the protection of antimicrobial potency of bioactive compounds and antimicrobial constitutes. Therefore, it can be concluded that cold plasma treatment is an innovative strategy to strengthen the edible film characteristics as a promising alternative to the currently used chemical and physical modification approaches.


Assuntos
Anti-Infecciosos , Filmes Comestíveis , Gases em Plasma , Anti-Infecciosos/química , Biopolímeros , Embalagem de Alimentos/métodos , Permeabilidade
9.
Biol Trace Elem Res ; 200(4): 1917-1936, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34275106

RESUMO

Lead is a toxic, non-biodegradable, and accumulative heavy metal released into the environment by natural and anthropogenic activities. Despite health concerns due to the consumption of lead-contaminated foods, no systematic and comprehensive review studies have been published about the lead occurrence in animal source foods in Iran. The present study aimed to review the papers investigating the Pb contamination in animal-based food groups (including meat, fish, milk and dairy products, egg and honey) in Iran. A comprehensive search was performed with selected keywords in databases of Scopus, Web of science, and Magiran to find articles that had been published from January 2010 to December 2019. Of 371 identified articles on Pb contaminations in foods, 60 articles were selected using PRISMA. The lead concentrations were higher than the maximum recommended limits in 3 of 9 studies on meat and meat products, 12 of 26 studies on fish and canned fish, and 5 of 18 studies on milk and dairy products. However, the Pb contamination observed in studies on honey and egg was not comparable due to the lack of national and international standards. These results represent the importance of environmental monitoring and assessment for reducing exposure of animals to Pb, resulting in an improvement of food safety.


Assuntos
Chumbo , Metais Pesados , Animais , Monitoramento Ambiental , Contaminação de Alimentos/análise , Irã (Geográfico) , Metais Pesados/análise , Medição de Risco , Alimentos Marinhos/análise
10.
Curr Res Food Sci ; 4: 765-772, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34766007

RESUMO

In recent years, people have a tendency to consume ready-made foods such as sausages. Therefore, the use of quality raw materials in these products is very important because these compounds may be contaminated with aflatoxin B1 (AFB1). Various biological and natural methods have been introduced to reduce aflatoxins in food products. The aim of the present study was to reduce AFB1 levels. So, ß-glucan (ßG) and Inulin (IN) were used in different ratios (1: 2%, 2: 1%, 1.5: 1.5%, 0: 3, 3: 0%) in chicken sausages. AFB1 levels were measured by High Performance Liquid Chromatography (HPLC) in a period of 1-45 days. Then, texture and sensory properties were examined. After 45 days, AFB1 levels were decreased in all samples, and the highest level of reduction (73.7%) was observed in samples with 5 µg/kg AFB1 and 3% ßG. Texture analysis showed that all the evaluated features complied with the standard. The hardness of chicken sausage with addition of IN (3%) (3.162N) was close to that of the control (2.99N). None of the products were significantly different from the control sample in terms of sensory properties. Therefore, ßG and IN are effective in reducing AFB1, and the produced sausages can be acceptable for marketing and be offered for consumption.

11.
Carbohydr Polym ; 256: 117554, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483057

RESUMO

In recent years, many studies have been conducted on the production of edible films from emerging gums, which are mostly made from botanical sources. However, each one interacts differently with the film compounds, producing films with different properties that may improve or hinder their utilization in food packaging. Therefore, the aim of this review was to investigate and compare the physical, mechanical, thermal and structural properties of edible films produced with these emerging gums. The results of this review showed that it is possible to produce edible films with desirable physical, mechanical and thermal properties by optimizing the amounts and type of compounds in film formulations such as plasticizers, nanoparticles, lipid compounds, crosslinkers and combination of gums with other biopolymers. The future trends of this research include the deepening of knowledge to understand the molecular structures of emerging gums and to address the shortcomings of films based on these gums for their industrial-scale application in food packaging.


Assuntos
Biopolímeros/química , Coloides/química , Filmes Comestíveis , Gomas Vegetais/química , Polissacarídeos/química , Varredura Diferencial de Calorimetria , Indústria Alimentícia , Embalagem de Alimentos , Conservação de Alimentos , Lipídeos/química , Estrutura Molecular , Nanopartículas/química , Nanoestruturas/química , Permeabilidade , Extratos Vegetais/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico
12.
Food Sci Nutr ; 8(11): 6014-6022, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33282253

RESUMO

Aflatoxin B1 (AFB1) incidence in cereal, especially in wheat products, is a serious worldwide challenge for human health. The objective of the current study was to survey the effect of various factors, including fermentation times, yeast levels, ingredients, and time/temperature combinations of the baking process on aflatoxin B1 (AFB1) reduction in order to modify parameters of the traditional cookie-making process. AFB1 levels were analyzed by an HPLC-fluorescence detector. The results revealed AFB1 levels significantly decreased during fermentation (%23.7), depending on an increase in the yeast level (2%) and fermentation time (90 min). Furthermore, there was a significant correlation between pH reduction and AFB1 decomposition. However, the formulation of the recipe did not show a significant effect on the detoxification of AFB1. The baking temperature increase in an admissible technological range (280°C for 15 min) more effectively reduced AFB1 content (%53.9). As a result, the exact control of the traditional process was able to significantly decreased AFB1 content as a serious health-threatening toxin in the final product (%75.9). However, AFB1 toxicity reduction should be considered seriously in the raw materials and such products.

13.
Environ Sci Pollut Res Int ; 27(31): 38591-38601, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623684

RESUMO

The copper pots with an inner coating layer of tin have been remarkably used in many countries for a long time. In this study, leaching of some metals from tin-lined copper pots into food simulators at different pHs (4, 5.5, 7, and 8.5) during boiling processing (95 °C for 1, 2, and 3 h) or refrigerated storage (4 °C for 1, 2, and 3 days) was investigated. Citric acid and sodium hydroxide were used to adjust the pH of food simulators. The leaching concentrations of metals were analyzed by inductively coupled plasma optical emission spectrometers (ICP-OES). Scanning electron microscopy (SEM) was used to indicate the surface morphological properties of cookware. Based on the preliminary experiments, metals including Al, Sn, Cu, Mn, Fe, Ca, Na, Cr, Mg, and Zn were selected to analyze in acidic treatments. Furthermore, Al, Cu, Sn, Na, and Ca were analyzed for neutral and alkaline ones. Results showed that the boiling temperature for 3 h resulted in a much higher migration of metals compared with cold storage for 3 days. Mn and Cr showed the lowest metal concentration during cooking and cold storage, respectively. The concentration of Sn in acidic simulators was remarkably higher than the other metals during both cooking and refrigerated storage. However, Ca during cold storage, as well as Na during both cooking and cold storage, showed the most migration in alkaline solutions, among the other pHs. An acidic simulator with pH 4 showed the most considerable release of metals from copper pots. SEM results indicated more intense surface corrosion by acidic solution (pH 4) than alkaline one. In general, longer cooking and cold storage durations led to increasing metals release. The migration of the studied metals demonstrates the impurities of the tin layer of these cookwares that may lead to acute and/or chronic diseases.


Assuntos
Cobre , Metais Pesados/análise , Culinária , Utensílios de Alimentação e Culinária , Metais , Estanho
14.
Food Res Int ; 112: 90-97, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30131162

RESUMO

This study investigated a novel method of photosensitizer-induced cross-linking (using riboflavin as a sensitizer) to improve the structural and physicochemical properties of gelatin-based edible films with different glycerol concentrations (25% and 50%) during different UV exposure times (2, 4 and 6 h). The films' tensile strength was enhanced significantly for both glycerol concentrations with increasing UV exposure times compared to the control film, so that the highest tensile strength was observed for films with 25% glycerol and 6 h of UV exposure (25%-6 h). The films' tensile strength declined and the elongation at break increased about three times when the glycerol concentration was increased to 50% with 6 h exposure. The photosensitizer-induced cross-linking significantly reduced the films' solubility and permeability. The UV-treated films exhibited very good barrier properties against UV, with zero light transmission at a wavelength of 200 to 350 nm. Moreover, no toxicity was found in any of the films. In addition, Fourier transform infrared spectroscopy and differential scanning calorimetry findings revealed a good interaction between functional groups of riboflavin (as the sensitizer) and gelatin in the 25%-6 h film. Therefore, this new method can be a suitable alternative to chemical methods of cross-linking biopolymers.


Assuntos
Embalagem de Alimentos/métodos , Gelatina/efeitos da radiação , Oxidantes Fotoquímicos/química , Riboflavina/química , Raios Ultravioleta , Animais , Varredura Diferencial de Calorimetria , Sobrevivência Celular/efeitos dos fármacos , Gelatina/química , Gelatina/toxicidade , Glicerol/química , Humanos , Camundongos , Células NIH 3T3 , Oxidantes Fotoquímicos/toxicidade , Oxirredução , Permeabilidade , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Fatores de Tempo
15.
Int J Biol Macromol ; 107(Pt A): 406-412, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28890374

RESUMO

This study investigated the physico-mechanical and structural properties of composite edible films based on eggshell membrane gelatin (G) and chitosan (Ch) (75G:25Ch, 50G:50Ch, 25G:75Ch). The results demonstrated that the addition of Ch increased elongation at break significantly (p<0.05), but resulted in no significant change in tensile strength (TS) using 75G:25Ch, 50G:50Ch mixtures in comparison with gelatin-based film. The water solubility and water vapor permeability of the 50G:50Ch film decreased significantly compared to plain films (100G:0Ch and 0G:100Ch) and other composite films (p<0.05). Fourier transform infrared spectroscopy evaluation of structural properties showed that both polymers are totally miscible. Scanning electron microscopy was used to study the morphology of the composite films; it revealed a homogenous and compact structure in 75G:25Ch and 50G:50 Ch. Also, the chemical interactions introduced by the addition of chitosan to eggshell membrane gelatin as new resources could improve the films' functional properties.


Assuntos
Quitosana/química , Embalagem de Alimentos , Gelatina/química , Animais , Casca de Ovo/química , Gelatina/ultraestrutura , Humanos , Membranas/química , Microscopia Eletrônica de Varredura , Permeabilidade , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração
16.
Int J Biol Macromol ; 104(Pt A): 687-707, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28652152

RESUMO

Currently used approaches for biopolymer modification are either expensive, poisonous or do not lead into the well-desired characteristics to the final film materials. Development of crosslinking procedure is an innovative strategy to improve mechanical, physical and thermal properties of biopolymer films. This review provides a brief description of film-forming biopolymers (e.g. chitosan, whey protein, alginate and starch) followed by a detailed introduction to definition and classification of various crosslinkers, the effect of crosslinking on emerging attributes of biopolymer films including physical, mechanical and thermal properties, identification of crosslinking occurrence, and cytotoxicity status of commonly used crosslinkers in the field of food and food-related packaging materials.


Assuntos
Produtos Biológicos/química , Biopolímeros/química , Reagentes de Ligações Cruzadas/química , Embalagem de Alimentos/métodos , Humanos , Fenômenos Mecânicos , Temperatura
17.
Mater Sci Eng C Mater Biol Appl ; 71: 1052-1063, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987659

RESUMO

The effects of glycerol, bacterial cellulose nanocrystal (BCNC) and boric acid concentrations on the mechanical properties of PVA based films, including ultimate tensile strength (UTS), elongation at break (EAB), tensile Young's modulus (TYM), tensile toughness to break (TT), ultimate puncture strength (UPS), puncture deformation (PD), puncture Young's modulus (PYM) and puncture toughness to break (PT), were scrutinized using a response surface methodology-central composite rotatable design (RSM-CCRD). Second-order polynomial models with high R2 values ranging from 0.945 to 0.977 were developed for the studied responses using multiple linear regression analysis. The models showed the maximum UTS (72.84MPa), EAB (293.43%), UPS (4.64MPa) and PD (31.80%) could be achieved at 13.89% glycerol concentration, 5.00% BCNC concentration and a boric acid content of 1.96%. The predicted values for optimum conditions were in good agreement with experimental data. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the formation of intramolecular and intermolecular hydrogen and ether crosslinkages in PVA and/or BCNC chains when boric acid is applied. Results showed that PVA/BCNC nanocomposite films plasticized with glycerol and crosslinked with boric acid showed appropriate mechanical properties that made them suitable as a disposable packaging film.


Assuntos
Membranas Artificiais , Modelos Químicos , Nanocompostos/química , Álcool de Polivinil/química , Ácidos Bóricos/química , Celulose/química , Módulo de Elasticidade , Glicerol/química , Nanopartículas/química
18.
Food Chem ; 190: 186-193, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26212959

RESUMO

Response surface methodology (RSM) was used to investigate the effect of extraction-process variables on pepsin-soluble collagen (PSC) from eggshell membrane. A central composite design (CCD) was employed for experimental design and analysis of the results to obtain the best possible combination of NaOH concentration (X1: 0.4-1.2 mol/l), alkali treatment time (X2: 6-30 h), enzyme concentration (X3: 15-75 U/mg) and hydrolysis time (X4: 12-60 h) for maximum PSC extraction. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and analyzed by appropriate statistical methods. According to the results, optimum extraction conditions were as follows: NaOH concentration of 0.76 mol/l, alkali treatment time of 18 h, enzyme concentration of 50 U/mg and hydrolysis time of 43.42 h. The experimental extraction yield under optimal conditions was found to be 30.049%, which is in good agreement with the predicted value of 30.054%.


Assuntos
Fracionamento Químico/métodos , Colágeno/química , Casca de Ovo/química , Pepsina A/química , Extratos Vegetais/química , Animais , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA