Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Pollut ; 317: 120791, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464114

RESUMO

Many endocrine disruptors have been proven to impair the meiotic process which is required for the production of healthy gametes. Bisphenol A is emblematic of such disruptors, as it impairs meiotic prophase I and causes oocyte aneuploidy following in utero exposure. However, the mechanisms underlying these deleterious effects remain poorly understood. Furthermore, the increasing use of BPA alternatives raises concerns for public health. Here, we investigated the effects of foetal exposure to two BPA alternatives, bisphenol A Diglycidyl Ether (BADGE) and bisphenol AF (BPAF), on oogenesis in mice. These compounds delay meiosis initiation, increase the number of MLH1 foci per cell and induce oocyte aneuploidy. We further demonstrate that these defects are accompanied by changes in gene expression in foetal premeiotic germ cells and aberrant mRNA splicing of meiotic genes. We observed an increase in DNA oxidation after exposure to BPA alternatives. Specific induction of oxidative DNA damage during foetal germ cell differentiation causes similar defects during oogenesis, as observed in 8-oxoguanine DNA Glycosylase (OGG1)-deficient mice or after in utero exposure to potassium bromate (KBrO3), an inducer of oxidative DNA damage. The supplementation of BPA alternatives with N-acetylcysteine (NAC) counteracts the effects of bisphenols on meiosis. Together, our results propose oxidative DNA lesion as an event that negatively impacts female meiosis with major consequences on oocyte quality. This could be a common mechanism of action for numerous environmental pro-oxidant pollutants, and its discovery, could lead to reconsider the adverse effect of bisphenol mixtures that are simultaneously present in our environment.


Assuntos
Meiose , Ovário , Feminino , Camundongos , Animais , Compostos Benzidrílicos/toxicidade , DNA , Aneuploidia
2.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769238

RESUMO

For decades, numerous chemical pollutants have been described to interfere with endogenous hormone metabolism/signaling altering reproductive functions. Among these endocrine disrupting substances, Bisphenol A (BPA), a widely used compound, is known to negatively impact germ and somatic cells in the testis. Physical agents, such as ionizing radiation, were also described to perturb spermatogenesis. Despite the fact that we are constantly exposed to numerous environmental chemical and physical compounds, very few studies explore the impact of combined exposure to chemical and physical pollutants on reproductive health. The aim of this study was to describe the impact of fetal co-exposure to BPA and IR on testicular function in mice. We exposed pregnant mice to 10 µM BPA (corresponding to 0.5 mg/kg/day) in drinking water from 10.5 dpc until birth, and we irradiated mice with 0.2 Gy (γ-ray, RAD) at 12.5 days post-conception. Co-exposure to BPA and γ-ray induces DNA damage in fetal germ cells in an additive manner, leading to a long-lasting decrease in germ cell abundance. We also observed significant alteration of adult steroidogenesis by RAD exposure independently of the BPA exposure. This is illustrated by the downregulation of steroidogenic genes and the decrease of the number of adult Leydig cells. As a consequence, courtship behavior is modified, and male ultrasonic vocalizations associated with courtship decreased. In conclusion, this study provides evidence for the importance of broadening the concept of endocrine disruptors to include physical agents, leading to a reevaluation of risk management and regulatory decisions.


Assuntos
Compostos Benzidrílicos/toxicidade , Raios gama/efeitos adversos , Células Intersticiais do Testículo/metabolismo , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Lesões Experimentais por Radiação/metabolismo , Animais , Feminino , Células HeLa , Humanos , Células Intersticiais do Testículo/patologia , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Lesões Experimentais por Radiação/patologia
3.
Development ; 148(6)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782043

RESUMO

Rostro-caudal patterning of vertebrates depends on the temporally progressive activation of HOX genes within axial stem cells that fuel axial embryo elongation. Whether the pace of sequential activation of HOX genes, the 'HOX clock', is controlled by intrinsic chromatin-based timing mechanisms or by temporal changes in extrinsic cues remains unclear. Here, we studied HOX clock pacing in human pluripotent stem cell-derived axial progenitors differentiating into diverse spinal cord motor neuron subtypes. We show that the progressive activation of caudal HOX genes is controlled by a dynamic increase in FGF signaling. Blocking the FGF pathway stalled induction of HOX genes, while a precocious increase of FGF, alone or with GDF11 ligand, accelerated the HOX clock. Cells differentiated under accelerated HOX induction generated appropriate posterior motor neuron subtypes found along the human embryonic spinal cord. The pacing of the HOX clock is thus dynamically regulated by exposure to secreted cues. Its manipulation by extrinsic factors provides synchronized access to multiple human neuronal subtypes of distinct rostro-caudal identities for basic and translational applications.This article has an associated 'The people behind the papers' interview.


Assuntos
Relógios Circadianos , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/metabolismo , Células-Tronco Pluripotentes/metabolismo , Benzamidas/farmacologia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular , Relógios Circadianos/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Fatores de Diferenciação de Crescimento/farmacologia , Proteínas de Homeodomínio/genética , Humanos , Neurônios Motores/citologia , Células-Tronco Pluripotentes/citologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo
4.
Brain ; 143(10): 2911-2928, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103737

RESUMO

Human post-natal neurodevelopmental delay is often associated with cerebral alterations that can lead, by themselves or associated with peripheral deficits, to premature death. Here, we report the clinical features of 10 patients from six independent families with mutations in the autosomal YIF1B gene encoding a ubiquitous protein involved in anterograde traffic from the endoplasmic reticulum to the cell membrane, and in Golgi apparatus morphology. The patients displayed global developmental delay, motor delay, visual deficits with brain MRI evidence of ventricle enlargement, myelination alterations and cerebellar atrophy. A similar profile was observed in the Yif1b knockout (KO) mouse model developed to identify the cellular alterations involved in the clinical defects. In the CNS, mice lacking Yif1b displayed neuronal reduction, altered myelination of the motor cortex, cerebellar atrophy, enlargement of the ventricles, and subcellular alterations of endoplasmic reticulum and Golgi apparatus compartments. Remarkably, although YIF1B was not detected in primary cilia, biallelic YIF1B mutations caused primary cilia abnormalities in skin fibroblasts from both patients and Yif1b-KO mice, and in ciliary architectural components in the Yif1b-KO brain. Consequently, our findings identify YIF1B as an essential gene in early post-natal development in human, and provide a new genetic target that should be tested in patients developing a neurodevelopmental delay during the first year of life. Thus, our work is the first description of a functional deficit linking Golgipathies and ciliopathies, diseases so far associated exclusively to mutations in genes coding for proteins expressed within the primary cilium or related ultrastructures. We therefore propose that these pathologies should be considered as belonging to a larger class of neurodevelopmental diseases depending on proteins involved in the trafficking of proteins towards specific cell membrane compartments.


Assuntos
Cílios/genética , Complexo de Golgi/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Transporte Vesicular/genética , Animais , Células Cultivadas , Cílios/patologia , Feminino , Complexo de Golgi/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/diagnóstico por imagem
6.
Biomolecules ; 9(10)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561560

RESUMO

In female mammals, germ cells enter meiosis in the fetal ovaries, while in males, meiosis is prevented until postnatal development. Retinoic acid (RA) is considered the main inducer of meiotic entry, as it stimulates Stra8 which is required for the mitotic/meiotic switch. In fetal testes, the RA-degrading enzyme CYP26B1 prevents meiosis initiation. However, the role of endogenous RA in female meiosis entry has never been demonstrated in vivo. In this study, we demonstrate that some effects of RA in mouse fetal gonads are not recapitulated by the invalidation or up-regulation of CYP26B1. In organ culture of fetal testes, RA stimulates testosterone production and inhibits Sertoli cell proliferation. In the ovaries, short-term inhibition of RA-signaling does not decrease Stra8 expression. We develop a gain-of-function model to express CYP26A1 or CYP26B1. Only CYP26B1 fully prevents STRA8 induction in female germ cells, confirming its role as part of the meiotic prevention machinery. CYP26A1, a very potent RA degrading enzyme, does not impair the formation of STRA8-positive cells, but decreases Stra8 transcription. Collectively, our data reveal that CYP26B1 has other activities apart from metabolizing RA in fetal gonads and suggest a role of endogenous RA in amplifying Stra8, rather than being the initial inducer of Stra8. These findings should reactivate the quest to identify meiotic preventing or inducing substances.


Assuntos
Gônadas/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Gônadas/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Receptores do Ácido Retinoico/metabolismo , Testosterona/análise , Testosterona/biossíntese
7.
PLoS One ; 13(1): e0191934, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29385186

RESUMO

BACKGROUND: Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 µM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models. METHODS: Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 µM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 µM BPA (~ 500 µg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 µM and 0.038 µM respectively. Mice grafted with second trimester testes received 0.5 and 50 µg/kg/day BPA by oral gavage for 5 weeks. RESULTS: With first trimester human testes, using the hFeTA model, 10 µM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice. CONCLUSIONS: Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures.


Assuntos
Compostos Benzidrílicos/toxicidade , Poluentes Ambientais/toxicidade , Células Intersticiais do Testículo/efeitos dos fármacos , Fenóis/toxicidade , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Gravidez , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , Radioimunoensaio , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/citologia , Testículo/embriologia , Testosterona/sangue
8.
Hum Reprod ; 32(3): 631-642, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073973

RESUMO

STUDY QUESTION: How can pre-meiotic germ cells persist in the human foetal ovary? SUMMARY ANSWER: Numerous oogonia escaping meiotic entry were retrieved throughout human ovarian development simultaneously with the expression of signalling pathways preventing meiosis, typically described in the rodent embryonic testis. WHAT IS KNOWN ALREADY: The transition from mitosis to meiosis is a key event in female germ cells that remains poorly documented in research on the human ovary. Previous reports described a strikingly asynchronous differentiation in the human female germ line during development, with the persistence of oogonia among oocytes and follicles during the second and third trimesters. The possible mechanisms allowing some cells to escape meiosis remain elusive. STUDY DESIGN SIZE, DURATION: In order to document the extent of this phenomenon, we detailed the expression profile of germ cell differentiation markers using 73 ovaries ranging from 6.4 to 35 weeks post-fertilization. PARTICIPANTS/MATERIALS SETTING, METHODS: Pre-meiotic markers were detected by immunohistochemistry or qRT-PCR. The expression of the main meiosis-preventing factors identified in mice was analysed, and their functionality assessed using organ cultures. MAIN RESULTS AND THE ROLE OF CHANCE: Oogonia stained for AP2γ could be traced from the first trimester until the end of the third trimester. Female germ cell differentiation is organized both in time and space in a centripetal manner in the foetal human ovary. Unexpectedly, some features usually ascribed to rodent pre-spermatogonia could be observed in human foetal ovaries, such as NANOS2 expression and quiescence in some germ cells. The two main somatic signals known to inhibit meiosis in the mouse embryonic testis, CYP26B1 and FGF9, were detected in the human ovary and act simultaneously to repress STRA8 and meiosis in human foetal female germ cells. LARGE SCALE DATA: N/A. LIMITATIONS REASON FOR CAUTION: Our conclusions relied partly on in vitro experiments. Germ cells were not systematically identified with immunostaining and some may have thus escaped analysis. WIDER IMPLICATIONS OF THE FINDINGS: We found evidence that a robust repression of meiotic entry is taking place in the human foetal ovary, possibly explaining the exceptional long-lasting presence of pre-meiotic germ cells until late gestational age. This result calls for a redefinition of the markers known as classical male markers, which may in fact characterize mammalian developing gonads irrespectively of their sex. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the Université Paris Diderot-Paris 7 and Université Paris-Sud, CEA, INSERM, and Agence de la Biomédecine. The authors declare no conflict of interest.


Assuntos
Células Germinativas Embrionárias/metabolismo , Meiose/fisiologia , Ovário/embriologia , Testículo/embriologia , Animais , Proliferação de Células/fisiologia , Feminino , Humanos , Masculino , Camundongos , Oogônios/citologia , Oogônios/metabolismo , Ovário/metabolismo , Transdução de Sinais/fisiologia , Espermatogônias/citologia , Espermatogônias/metabolismo , Testículo/metabolismo
9.
J Appl Toxicol ; 36(11): 1505-15, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26934186

RESUMO

Pregnant Sprague-Dawley rats were administered deltamethrin, at doses 0.1, 1, 5 or 10 mg kg(-1) day(-1) , or di-n-hexyl phthalate (DnHP) (250 mg kg(-1) day(-1) ), by gavage, from gestational day 13 to 19. Maternal toxicity was observed at 10 mg kg(-1) day(-1) , as evidenced by transient clinical signs of neurotoxicity and reductions in body weight, body weight gain and corrected weight gain. Deltamethrin had no statistically significant effect on the incidence of post-implantation loss, fetal weight or anogenital distance in the male fetuses. Unlike DnHP, deltamethrin induced no changes in the expression of several genes involved in cholesterol transport or in the steroid synthesis pathway in the testes of gestational day 19.5 male fetuses (SRB1, StAR, P450scc, 3ßHSD, P450 17 A1, 17ßHSD). Fetal testicular levels of P450scc and P450 17 A1 protein were also unaffected by deltamethrin. No statistically significant differences were observed in the ex vivo fetal testicular production of testosterone and androstenedione after deltamethrin exposure, whereas DnHP markedly reduced these parameters. The deltamethrin metabolite, 3-phenoxybenzoic acid, was detected in amniotic fluid. In summary, our results demonstrate that in utero exposure to deltamethrin during the period of sexual differentiation had no significant effect on the testosterone synthesis pathway in the male rat fetus up to a maternal toxic dose. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Inseticidas/toxicidade , Nitrilas/toxicidade , Organogênese/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Piretrinas/toxicidade , Testículo/efeitos dos fármacos , Testosterona/biossíntese , Animais , Feminino , Masculino , Exposição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos Sprague-Dawley , Testículo/embriologia , Testículo/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-25999913

RESUMO

During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food, and many consumer products), several can act as endocrine disrupting compounds (EDCs), thus interfering with the endocrine system. Phthalates, bisphenol A (BPA), and diethylstilbestrol (DES) have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review, we discuss the role of classical nuclear receptors (genomic pathway) in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA, and DES. Among the nuclear receptors, we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR), androgen receptor (AR), estrogen receptors (ERα and ß), liver X receptors (LXR), and small heterodimer partner (SHP). First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models) of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s). We also point-out the involvement of other receptors and nuclear receptor-independent pathways.

12.
Fertil Steril ; 103(1): 11-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25475787

RESUMO

Bisphenol A (BPA) is a widely studied typical endocrine-disrupting chemical, and one of the major new issues is the safe replacement of this commonly used compound. Bisphenol S (BPS) and bisphenol F (BPF) are already or are planned to be used as BPA alternatives. With the use of a culture system that we developed (fetal testis assay [FeTA]), we previously showed that 10 nmol/L BPA reduces basal testosterone secretion of human fetal testis explants and that the susceptibility to BPA is at least 100-fold lower in rat and mouse fetal testes. Here, we show that addition of LH in the FeTA system considerably enhances BPA minimum effective concentration in mouse and human but not in rat fetal testes. Then, using the FeTA system without LH (the experimental conditions in which mouse and human fetal testes are most sensitive to BPA), we found that, as for BPA, 10 nmol/L BPS or BPF is sufficient to decrease basal testosterone secretion by human fetal testes with often nonmonotonic dose-response curves. In fetal mouse testes, the dose-response curves were mostly monotonic and the minimum effective concentrations were 1,000 nmol/L for BPA and BPF and 100 nmol/L for BPS. Finally, 10,000 nmol/L BPA, BPS, or BPF reduced Insl3 expression in cultured mouse fetal testes. This is the first report describing BPS and BPF adverse effects on a physiologic function in humans and rodents.


Assuntos
Compostos Benzidrílicos/toxicidade , Compostos de Epóxi/toxicidade , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Sulfonas/toxicidade , Testículo/efeitos dos fármacos , Testículo/embriologia , Animais , Relação Dose-Resposta a Droga , Substituição de Medicamentos/efeitos adversos , Substituição de Medicamentos/métodos , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Feminino , Humanos , Masculino , Camundongos , Gravidez , Ratos , Medição de Risco , Especificidade da Espécie
13.
Development ; 141(22): 4298-310, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25344072

RESUMO

Absence of mitosis and meiosis are distinguishing properties of male germ cells during late fetal and early neonatal periods. Repressors of male germ cell meiosis have been identified, but mitotic repressors are largely unknown, and no protein repressing both meiosis and mitosis is known. We demonstrate here that the zinc-finger protein BNC2 is present in male but not in female germ cells. In testis, BNC2 exists as several spliced isoforms and presumably binds to DNA. Within the male germ cell lineage, BNC2 is restricted to prospermatogonia and undifferentiated spermatogonia. Fetal prospermatogonia that lack BNC2 multiply excessively on embryonic day (E)14.5 and reenter the cell cycle prematurely. Mutant prospermatogonia also engage in abnormal meiosis; on E17.5, Bnc2(-/-) prospermatogonia start synthesizing the synaptonemal protein SYCP3, and by the time of birth, many Bnc2(-/-) prospermatogonia have accumulated large amounts of nonfilamentous SYCP3, thus appearing to be blocked at leptonema. Bnc2(-/-) prospermatogonia do not undergo proper male differentiation, as they lack almost all the mRNA for the male-specific methylation protein DNMT3L and have increased levels of mRNAs that encode meiotic proteins, including STRA8. Bnc2(-/-) prospermatogonia can produce spermatogonia, but these enter meiosis prematurely and undergo massive apoptotic death during meiotic prophase. This study identifies BNC2 as a major regulator of male germ stem cells, which is required for repression of meiosis and mitosis in prospermatogonia, and for meiosis progression during spermatogenesis. In view of the extreme evolutionary conservation of BNC2, the findings described here are likely to apply to many species.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Meiose/fisiologia , Mitose/fisiologia , Espermatogênese/fisiologia , Espermatogônias/fisiologia , Animais , Proteínas de Ciclo Celular , DNA (Citosina-5-)-Metiltransferases/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Imuno-Histoquímica , Masculino , Meiose/genética , Camundongos , Camundongos Knockout , Mitose/genética , Proteínas Nucleares/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Espermatogênese/genética , Espermatogônias/metabolismo
14.
Mol Hum Reprod ; 20(10): 960-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25082981

RESUMO

We identified three doublesex and mab-3-related transcription factors (DMRT) that were sexually differentially expressed in human fetal gonads and present in the ovaries at the time of meiotic initiation. These were also identified in murine embryonic female germ cells. Among these, we focused on DMRTA2 (DMRT5), whose function is unknown in the developing gonads, and clarified its role in human female fetal germ cells, using an original xenograft model. Early human fetal ovaries (8-11 weeks post-fertilization) were grafted into nude mice. Grafted ovaries developed normally, with no apparent overt changes, when compared with ungrafted ovaries at equivalent developmental stages. Appropriate germ cell density, mitotic/meiotic transition, markers of meiotic progression and follicle formation were evident. Four weeks after grafting, mice were treated with siRNA, specifically targeting human DMRTA2 mRNA. DMRTA2 inhibition triggered an increase in undifferentiated FUT4-positive germ cells and a decrease in the percentage of meiotic γH2AX-positive germ cells, when compared with mice that were injected with control siRNA. Interestingly, the expression of markers associated with pre-meiotic germ cell differentiation was also impaired, as was the expression of DMRTB1 (DMRT6) and DMRTC2 (DMRT7). This study reveals, for the first time, the requirement of DMRTA2 for normal human female embryonic germ cell development. DMRTA2 appears to be necessary for proper differentiation of oogonia, prior to entry into meiosis, in the human species. Additionally, we developed a new model of organ xenografting, coupled with RNA interference, which provides a useful tool for genetic investigations of human germline development.


Assuntos
Fucosiltransferases/metabolismo , Histonas/metabolismo , Antígenos CD15/metabolismo , Ovário/transplante , Óvulo/citologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos SCID , Ovário/crescimento & desenvolvimento , Óvulo/crescimento & desenvolvimento , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição/biossíntese , Transplante Heterólogo
15.
Ann Endocrinol (Paris) ; 75(2): 54-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24793993

RESUMO

The modern societies are exposing us to a huge variety of potentially harmful pollutants. Among these endocrine disruptors (EDs) have been especially scrutinized as several were proven to display reprotoxic effects in rodent models. In the context of high and growing concerns about the reprotoxicity of EDs, it is crucial to carry out studies in order to assess their impact on the human reproductive function. However, such evidence remains scarce. The fetal period is critical for the proper development of the testis and is known as a period of high sensitivity to many EDs. Our team has shown in 2009 that a phthalate, mono-(2-ethylhexyl) phthalate (MEHP), has a potential deleterious effect on the development of human male germ cells. This result was the first direct experimental proof of the toxic effect of an ED in human testis. More recently, we also reported that bisphenol A (BPA) impaired testosterone production in the human fetal testis. Here, we will summarize the known effects of EDs on the various cell types composing the human developing testis and discuss their relevancy to propose future directions.


Assuntos
Disruptores Endócrinos/toxicidade , Testículo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/toxicidade , Transtornos do Desenvolvimento Sexual/induzido quimicamente , Disruptores Endócrinos/farmacologia , Feminino , Idade Gestacional , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Oligospermia/induzido quimicamente , Técnicas de Cultura de Órgãos , Fenóis/farmacologia , Fenóis/toxicidade , Ácidos Ftálicos/farmacologia , Ácidos Ftálicos/toxicidade , Gravidez , Ratos , Neoplasias Testiculares/induzido quimicamente , Testículo/citologia , Testículo/embriologia , Testosterona/biossíntese
16.
Reproduction ; 147(4): R119-29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497529

RESUMO

Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk.


Assuntos
Experimentação Animal/normas , Disruptores Endócrinos/toxicidade , Roedores , Testes de Toxicidade/normas , Animais , Humanos , Masculino , Camundongos , Modelos Animais , Ratos , Medição de Risco , Testículo/efeitos dos fármacos , Testes de Toxicidade/métodos
17.
Asian J Androl ; 16(1): 60-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24369134

RESUMO

In the present review, we first summarize the main benefits, limitations and pitfalls of conventional in vivo approaches to assessing male reproductive structures and functions in rodents in cases of endocrine active substance (EAS) exposure from the postulate that they may provide data that can be extrapolated to humans. Then, we briefly present some integrated approaches in rodents we have recently developed at the organism level. We particularly focus on the possible effects and modes of action (MOA) of these substances at low doses and in mixtures, real-life conditions and at the organ level, deciphering the precise effects and MOA on the fetal testis. It can be considered that the in vivo experimental EAS exposure of rodents remains the first choice for studies and is a necessary tool (together with the epidemiological approach) for understanding the reproductive effects and MOA of EASs, provided the pitfalls and limitations of the rodent models are known and considered. We also provide some evidence that classical rodent models may be refined for studying the multiple consequences of EAS exposure, not only on the reproductive axis but also on various hormonally regulated organs and tissues, among which several are implicated in the complex process of mammalian reproduction. Such models constitute an interesting way of approaching human exposure conditions. Finally, we show that organotypic culture models are powerful complementary tools, especially when focusing on the MOA. All these approaches have contributed in a combinatorial manner to a better understanding of the impact of EAS exposure on human reproduction.


Assuntos
Disruptores Endócrinos/toxicidade , Exposição Ambiental/efeitos adversos , Reprodução/efeitos dos fármacos , Animais , Feto , Humanos , Masculino , Modelos Animais , Técnicas de Cultura de Órgãos , Oxazóis/toxicidade , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/embriologia
18.
Basic Clin Androl ; 24: 14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25780587

RESUMO

Phthalates provide one of the most documented example evidencing how much we must be cautious when using the traditional paradigm based on extrapolation of experimental data from rodent studies for human health risk assessment of endocrine disruptors (EDs). Since foetal testis is known as one of the most sensitive targets of EDs, phthalate risk assessment is routinely based on the capacity of such compounds to decrease testosterone production by the testis or to impair masculinization in the rat during foetal life. In this paper, the well-established inhibiting effects of phthalates of the foetal Leydig cells function in the rat are briefly reviewed. Then, data obtained in humans and other species are carefully analysed. Already in January 2009, using the organotypic culture system named Fetal Testis Assay (FeTA) that we developed, we reported that phthalates might not affect testosterone production in human foetal testes. Several recent experimental studies using xenografts confirm the absence of detectable anti-androgenic effect of phthalates in the human foetal testes. Epidemiological studies led to contradictory results. Altogether, these findings suggest that phthalates effects on foetal Leydig cells are largely species-specific. Consequently, the phthalate threshold doses that disturb foetal steroidogenesis in rat testes and that are presently used to define the acceptable daily intake levels for human health protection must be questioned. This does not mean that phthalates are safe because these compounds have many deleterious effects upon germ cell development that may be common to the different studied species including human. More generally, the identification of common molecular, cellular or/and phenotypic targets in rat and human testes should precede the choice of the toxicological endpoint in rat to accurately assess the safety threshold of any ED in humans.


En toxicologie réglementaire, l'évaluation du risque sanitaire d'un perturbateur endocrinien (PE) est basée sur le paradigme traditionnel qui consiste à extrapoler à l'espèce humaine les données obtenues chez l'animal. Les phtalates fournissent un des exemples les mieux documentés montrant combien nous devons être prudents dans cette démarche. Le testicule fœtal est une cible privilégiée des PE et l'évaluation du risque sanitaire des phtalates a été construite sur la capacité de ces produits à inhiber la production testiculaire de testostérone ou à réduire la masculinisation pendant la vie fœtale chez le rat. Dans cet article, nous présentons brièvement les effets inhibiteurs bien connus des phtalates sur les fonctions des cellules de Leydig fœtales chez le rat. Puis nous détaillons les études effectuées chez l'homme et les autres espèces. Dès janvier 2009, en utilisant un système de culture organotypique original que nous avions mis au point et nommé hFeTA pour human Fetal Testis Assay, nous avons montré que les phtalates ne réduisent pas la production de testostérone par le testicule fœtal humain. En utilisant des modèles de xénogreffes, plusieurs études ont confirmé récemment l'absence d'effet antiandrogénique détectable des phtalates sur le testicule fœtal humain. Les études épidémiologiques ont conduits à des conclusions contradictoires. En définitive, l'effet des phtalates sur les cellules de Leydig fœtales est largement dépendant de l'espèce. En conséquence, on doit s'interroger sur le bien-fondé de l'utilisation actuelle de la dose minimale induisant un déficit de la stéroïdogenèse dans le testicule fœtal de rat pour définir les normes réglementaires d'exposition aux phtalates en santé humaine. Il faut noter que, bien que les phtalates semblent dépourvus d'effet antiandrogénique sur le testicule fœtal humain, ils ne sont pas sans danger puiqu'ils altèrent le développement de la lignée germinale chez l'Homme comme chez toutes les espèces étudiées. De façon plus générale, nous préconisions que l'identification de cibles moléculaires, cellulaires, et/ou phénotypiques communes au rat et à l'homme précéde le choix d'un paramètre critique utilisant le rat comme modèle en toxicologie réglementaire.

19.
J Appl Toxicol ; 33(9): 1027-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23754470

RESUMO

In utero exposure to the phthalate ester plasticizer di-n-hexyl phthalate (DnHP) is known to affect the development of the male reproductive system and induce alterations in androgen-dependent tissues of male rat offspring. Male reproductive malformations produced by several phthalates have been causally linked to decreased testosterone production during the gestational period. This study was designed to evaluate the dose-response relationship for the effects of DnHP on the synthesis and production of testosterone in the fetal rat testis. Pregnant Sprague-Dawley rats were administered the vehicle (olive oil) and either DnHP (5 to 625 mg kg(-1) per day) or diethylhexyl phthalate (DEHP) (50 or 625 mg kg(-1) per day), by gavage, from gestation day (GD) 12 to19. Fetal testes were assessed on GD 19. DnHP reduced ex vivo testosterone production and down-regulated the expression of several genes required for cholesterol transport and steroid synthesis (i.e. SR-B1, StAR, P450scc, 3ßHSD and P450c17). These inhibitions were dose dependent. A no-effect level was established at 5 mg kg(-1) per day and a lowest-effect level at 20 mg kg(-1) per day. mRNA levels of SR-B1, StAR, P450scc and 3ßHSD were not similarly decreased in the adrenals. In conclusion, DnHP shares the same mode of action as DEHP in disrupting fetal testicular androgen synthesis. Alterations in testosterone production and in key steroidogenic gene expressions were apparent at lower doses than those causing postnatal reproductive malformations after gestational exposure during the critical period of male sexual differentiation. This suggests that they can be considered early biomarkers of DnHP-induced fetal testicular effects in rats.


Assuntos
Feto/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Testículo/efeitos dos fármacos , Testosterona/biossíntese , Animais , Dietilexilftalato/toxicidade , Relação Dose-Resposta a Droga , Regulação para Baixo , Feminino , Feto/patologia , Masculino , Exposição Materna/efeitos adversos , Nível de Efeito Adverso não Observado , Ácidos Ftálicos/administração & dosagem , Plastificantes/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Sprague-Dawley , Reprodução/efeitos dos fármacos , Testículo/metabolismo
20.
PLoS One ; 7(10): e48266, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23118965

RESUMO

BACKGROUND: Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10(-4)M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. CONCLUSIONS/SIGNIFICANCE: We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.


Assuntos
Dietilexilftalato/análogos & derivados , Feto/metabolismo , Receptores Nucleares Órfãos/genética , Ovário/citologia , Ovário/metabolismo , Testículo/citologia , Testículo/metabolismo , Dietilexilftalato/toxicidade , Poluentes Ambientais/toxicidade , Feminino , Feto/citologia , Regulação da Expressão Gênica , Humanos , Técnicas In Vitro , Lipídeos/biossíntese , Receptores X do Fígado , Masculino , Ovário/efeitos dos fármacos , Óvulo/citologia , Óvulo/efeitos dos fármacos , Óvulo/metabolismo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Testículo/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA