Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Astrobiology ; 20(11): 1363-1376, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33179968

RESUMO

The search for organic molecules at the surface of Mars is a key objective in astrobiology, given that many organic compounds are possible biosignatures and their presence is of interest with regard to the habitability of Mars. Current environmental conditions at the martian surface are harsh and affect the stability of organic molecules. For this reason, and because current and future Mars rovers collect samples from the upper surface layer, it is important to assess the fate of organic molecules under the conditions at the martian surface. Here, we present an experimental study of the evolution of uracil when exposed to UV radiation, pressure, and temperature conditions representative of the surface of Mars. Uracil was selected because it is a nucleobase that composes RNA, and it has been detected in interplanetary bodies that could be the exogenous source of this molecule by meteoritic delivery to the surface of Mars. Our results show that the experimental quantum efficiency of photodecomposition of uracil is 0.16 ± 0.14 molecule/photon. Although these results suggest that uracil is quickly photodegraded when directly exposed to UV light on Mars, such exposure produces dimers that are more stable over time than the monomer. The identified dimers could be targets of interest for current and future Mars space missions.


Assuntos
Meio Ambiente Extraterreno , Marte , Raios Ultravioleta , Uracila/química , Dimerização , Exobiologia
2.
Astrobiology ; 19(8): 1037-1052, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31314573

RESUMO

The search for organic molecules at the surface of Mars is a top priority of the Mars Science Laboratory (NASA) and ExoMars 2020 (ESA) space missions. Their main goal is to search for past and/or present molecular compounds related to a potential prebiotic chemistry and/or a biological activity on the Red Planet. A key step to interpret their data is to characterize the preservation or the evolution of organic matter in the martian environmental conditions. Several laboratory experiments have been developed especially concerning the influence of ultraviolet (UV) radiation. However, the experimental UV sources do not perfectly reproduce the solar UV radiation reaching the surface of Mars. For this reason, the International Space Station (ISS) can be advantageously used to expose the same samples studied in the laboratory to UV radiation representative of martian conditions. Those laboratory simulations can be completed by experiments in low Earth orbit (LEO) outside the ISS. Our study was part of the Photochemistry on the Space Station experiment on board the EXPOSE-R2 facility that was kept outside the ISS from October 2014 to February 2016. Chrysene, adenine, and glycine, pure or deposited on an iron-rich amorphous mineral phase, were exposed to solar UV. The total duration of exposure to UV radiation is estimated to be in the 1250-1420 h range. Each sample was characterized prior to and after the flight by Fourier transform infrared (FTIR) spectroscopy. These measurements showed that all exposed samples were partially degraded. Their quantum efficiencies of photodecomposition were calculated in the 200-250 nm wavelength range. They range from 10-4 to 10-6 molecules·photon-1 for pure organic samples and from 10-2 to 10-5 molecules·photon-1 for organic samples shielded by the mineral phase. These results highlight that none of the tested organics are stable under LEO solar UV radiation conditions. The presence of an iron-rich mineral phase increases their degradation.


Assuntos
Planeta Terra , Meio Ambiente Extraterreno , Marte , Compostos Orgânicos/análise , Fotoquímica , Astronave , Raios Ultravioleta , Meia-Vida , Cinética , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA