Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Biol ; 22(1): 74, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561802

RESUMO

BACKGROUND: The tunicates form a group of filter-feeding marine animals closely related to vertebrates. They share with them a number of features such as a notochord and a dorsal neural tube in the tadpole larvae of ascidians, one of the three groups that make tunicates. However, a number of typical chordate characters have been lost in different branches of tunicates, a diverse and fast-evolving phylum. Consequently, the tunic, a sort of exoskeleton made of extracellular material including cellulose secreted by the epidermis, is the unifying character defining the tunicate phylum. In the larva of ascidians, the tunic differentiates in the tail into a median fin (with dorsal and ventral extended blades) and a caudal fin. RESULTS: Here we have performed experiments in the ascidian Phallusia mammillata to address the molecular control of tunic 3D morphogenesis. We have demonstrated that the tail epidermis medio-lateral patterning essential for peripheral nervous system specification also controls tunic elongation into fins. More specifically, when tail epidermis midline identity was abolished by BMP signaling inhibition, or CRISPR/Cas9 inactivation of the transcription factor coding genes Msx or Klf1/2/4/17, median fin did not form. We postulated that this genetic program should regulate effectors of tunic secretion. We thus analyzed the expression and regulation in different ascidian species of two genes acquired by horizontal gene transfer (HGT) from bacteria, CesA coding for a cellulose synthase and Gh6 coding for a cellulase. We have uncovered an unexpected dynamic history of these genes in tunicates and high levels of variability in gene expression and regulation among ascidians. Although, in Phallusia, Gh6 has a regionalized expression in the epidermis compatible with an involvement in fin elongation, our functional studies indicate a minor function during caudal fin formation only. CONCLUSIONS: Our study constitutes an important step in the study of the integration of HGT-acquired genes into developmental networks and a cellulose-based morphogenesis of extracellular material in animals.


Assuntos
Urocordados , Animais , Urocordados/genética , Morfogênese/genética , Epiderme , Sistema Nervoso Periférico , Larva/genética , Celulose
2.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37213081

RESUMO

The most anterior structure of the ascidian larva is made of three palps with sensory and adhesive functions essential for metamorphosis. They derive from the anterior neural border and their formation is regulated by FGF and Wnt. Given that they also share gene expression profiles with vertebrate anterior neural tissue and cranial placodes, their study should shed light on the emergence of the unique vertebrate telencephalon. We show that BMP signaling regulates two phases of palp formation in Ciona intestinalis. During gastrulation, the anterior neural border is specified in a domain of inactive BMP signaling, and activating BMP prevented its formation. During neurulation, BMP defines ventral palp identity and indirectly specifies the inter-papilla territory separating the ventral and dorsal palps. Finally, we show that BMP has similar functions in the ascidian Phallusia mammillata, for which we identified novel palp markers. Collectively, we provide a better molecular description of palp formation in ascidians that will be instrumental for comparative studies.


Assuntos
Urocordados , Animais , Urocordados/genética , Sistema Nervoso/metabolismo , Transdução de Sinais , Gastrulação/genética , Placa Neural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
3.
BMC Biol ; 20(1): 152, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761237

RESUMO

BACKGROUND: Vertebrates develop their peripheral nervous system (PNS) from transient unique embryonic structures, the neural crest, and the ectodermal placodes that are located at the border of the forming central nervous system. By contrast, in the invertebrate chordates, amphioxus and ascidians, a large part of the PNS originates at the opposite of the embryo, in the ventral ectoderm. In both groups, a biphasic mechanism regulates ventral PNS formation: high BMP levels specify a neurogenic territory within which glutamatergic epidermal sensory neuron formation is controlled by the Notch pathway. Given these similarities and the phylogenetic relationships within chordates, it is likely that ventral PNS is an ancestral feature in chordates and that it has been lost in vertebrates. RESULTS: In order to get insights into the molecular control of ventral PNS formation and to test the hypothesis of their homology and potential contribution to the emergence of vertebrate PNS, we undertook a close comparison of ventral PNS formation in the ascidian Phallusia mammillata and the amphioxus Branchiostoma lanceolatum. Using timed RNA-seq series, we identified novel markers of the ventral PNS during different phases of its development in both species. By extensively determining the expression of paralogous and orthologous genes, we observed that only a minority of genes have a shared expression in the ventral PNS. However, a large fraction of ventral PNS orthologous genes are expressed in the dorsally forming PNS of vertebrates. CONCLUSIONS: Our work has significantly increased the molecular characterization of ventral PNS formation in invertebrate chordates. The low observed conservation of gene expression in the ventral PNS suggests that the amphioxus and ascidian ventral PNS are either not homologous, or alternatively extensive drift has occurred in their regulatory mechanisms following a long period (600 My) of separate evolution and accelerated evolution in the ascidian lineage. The homology to genes expressed in the dorsally forming PNS of vertebrates suggests that ancestral sensory neurons gene networks have been redeployed in vertebrates.


Assuntos
Anfioxos , Urocordados , Animais , Ectoderma , Regulação da Expressão Gênica no Desenvolvimento , Anfioxos/genética , Sistema Nervoso Periférico , Filogenia , Urocordados/genética , Vertebrados/genética
4.
Elife ; 92020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33191918

RESUMO

Ascidians with very similar embryos but highly divergent genomes are thought to have undergone extensive developmental system drift. We compared, in four species (Ciona and Phallusia for Phlebobranchia, Molgula and Halocynthia for Stolidobranchia), gene expression and gene regulation for a network of six transcription factors regulating peripheral nervous system (PNS) formation in Ciona. All genes, but one in Molgula, were expressed in the PNS with some differences correlating with phylogenetic distance. Cross-species transgenesis indicated strong levels of conservation, except in Molgula, in gene regulation despite lack of sequence conservation of the enhancers. Developmental system drift in ascidians is thus higher for gene regulation than for gene expression and is impacted not only by phylogenetic distance, but also in a clade-specific manner and unevenly within a network. Finally, considering that Molgula is divergent in our analyses, this suggests deep conservation of developmental mechanisms in ascidians after 390 My of separate evolution.


Assuntos
Sistema Nervoso Periférico/embriologia , Urocordados/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Larva/crescimento & desenvolvimento , Especificidade da Espécie , Urocordados/genética
5.
PLoS Genet ; 15(3): e1008054, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925162

RESUMO

Wnt/ß-catenin signaling is an ancient pathway in metazoans and controls various developmental processes, in particular the establishment and patterning of the embryonic primary axis. In vertebrates, a graded Wnt activity from posterior to anterior endows cells with positional information in the central nervous system. Recent studies in hemichordates support a conserved role for Wnt/ß-catenin in ectoderm antero-posterior patterning at the base of the deuterostomes. Ascidians are marine invertebrates and the closest relatives of vertebrates. By combining gain- and loss-of-function approaches, we have determined the role of Wnt/ß-catenin in patterning the three ectoderm derivatives of the ascidian Ciona intestinalis, central nervous system, peripheral nervous system and epidermis. Activating Wnt/ß-catenin signaling from gastrulation led to a dramatic transformation of the ectoderm with a loss of anterior identities and a reciprocal anterior extension of posterior identities, consistent with studies in other metazoans. Surprisingly, inhibiting Wnt signaling did not produce a reciprocal anteriorization of the embryo with a loss of more posterior identities like in vertebrates and hemichordate. Epidermis patterning was overall unchanged. Only the identity of two discrete regions of the central nervous system, the anteriormost and the posteriormost regions, were under the control of Wnt. Finally, the caudal peripheral nervous system, while being initially Wnt dependent, formed normally. Our results show that the Ciona embryonic ectoderm responds to Wnt activation in a manner that is compatible with the proposed function for this pathway at the base of the deuterostomes. However, possibly because of its fast and divergent mode of development that includes extensive use of maternal determinants, the overall antero-posterior patterning of the Ciona ectoderm is Wnt independent, and Wnt/ß-catenin signaling controls the formation of some sub-domains. Our results thus indicate that there has likely been a drift in the developmental systems controlling ectoderm patterning in the lineage leading to ascidians.


Assuntos
Padronização Corporal/fisiologia , Urocordados/crescimento & desenvolvimento , Via de Sinalização Wnt/fisiologia , Animais , Padronização Corporal/genética , Ciona intestinalis/crescimento & desenvolvimento , Ciona intestinalis/metabolismo , Ectoderma/metabolismo , Ectoderma/fisiologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento/genética , Transdução de Sinais , Urocordados/genética , Urocordados/metabolismo , Vertebrados , Proteínas Wnt
6.
Dev Biol ; 409(1): 277-287, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26592100

RESUMO

The tail ascidian larval peripheral nervous system is made up of epidermal sensory neurons distributed more or less regularly in ventral and dorsal midlines. Their formation occurs in two-steps: the ventral and dorsal midlines are induced as neurogenic territories by Fgf9/16/20 and Admp respectively. The Delta2/Notch interaction then controls the number of neurons that form. The genetic machinery acting between the inductive processes taking place before gastrulation and neuron specification at tailbud stages are largely unknown. The analysis of seven transcription factors expressed in the forming midlines revealed an unexpected complexity and dynamic of gene expression. Their systematic overexpression confirmed that these genes do not interact following a linear cascade of activation. However, the integration of our data revealed the distinct key roles of the two upstream factors Msxb and Nkx-C that are the earliest expressed genes and the only ones able to induce neurogenic midline and ESN formation. Our data suggest that Msxb would be the primary midline gene integrating inputs from the ventral and dorsal inducers and launching a pan-midline transcriptional program. Nkx-C would be involved in tail tip specification, in maintenance of the pan-midline network and in a posterior to anterior wave controlling differentiation.


Assuntos
Padronização Corporal/genética , Ciona intestinalis/embriologia , Ciona intestinalis/genética , Embrião não Mamífero/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Neurogênese/genética , Animais , Linhagem da Célula , Epiderme/embriologia , Epiderme/metabolismo , Epistasia Genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Modelos Biológicos , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
7.
PLoS Genet ; 10(8): e1004548, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25121599

RESUMO

In chordates, neural induction is the first step of a complex developmental process through which ectodermal cells acquire a neural identity. In ascidians, FGF-mediated neural induction occurs at the 32-cell stage in two blastomere pairs, precursors respectively of anterior and posterior neural tissue. We combined molecular embryology and cis-regulatory analysis to unveil in the ascidian Ciona intestinalis the remarkably simple proximal genetic network that controls posterior neural fate acquisition downstream of FGF. We report that the combined action of two direct FGF targets, the TGFß factor Nodal, acting via Smad- and Fox-binding sites, and the transcription factor Otx suffices to trigger ascidian posterior neural tissue formation. Moreover, we found that this strategy is conserved in the distantly related ascidian Phallusia mammillata, in spite of extreme sequence divergence in the cis-regulatory sequences involved. Our results thus highlight that the modes of gene regulatory network evolution differ with the evolutionary scale considered. Within ascidians, developmental regulatory networks are remarkably robust to genome sequence divergence. Between ascidians and vertebrates, major fate determinants, such as Otx and Nodal, can be co-opted into different networks. Comparative developmental studies in ascidians with divergent genomes will thus uncover shared ascidian strategies, and contribute to a better understanding of the diversity of developmental strategies within chordates.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes , Neurogênese/genética , Proteína Nodal/genética , Fatores de Transcrição Otx/genética , Animais , Sítios de Ligação , Blastômeros , Sistema Nervoso Central/crescimento & desenvolvimento , Ciona intestinalis/genética , Ciona intestinalis/crescimento & desenvolvimento , Gástrula/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteína Nodal/biossíntese , Fatores de Transcrição Otx/biossíntese
8.
Nucleic Acids Res ; 41(6): 3600-18, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23393190

RESUMO

Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as 'Olfactores conserved non-coding elements'.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Urocordados/genética , Vertebrados/genética , Animais , Sequência de Bases , Sequência Conservada , Cães , Peixes/genética , Redes Reguladoras de Genes , Genes Homeobox , Loci Gênicos , Genoma , Humanos , Mamíferos/genética , Camundongos , Sintenia , Transcrição Gênica
9.
Curr Biol ; 20(9): 792-802, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20434338

RESUMO

BACKGROUND: Transcription initiation is controlled by cis-regulatory modules. Although these modules are usually made of clusters of short transcription factor binding sites, a small minority of such clusters in the genome have cis-regulatory activity. This paradox is currently unsolved. RESULTS: To identify what discriminates active from inactive clusters, we focused our attention on short topologically unconstrained clusters of two ETS and two GATA binding sites, similar to the early neural enhancer of Ciona intestinalis Otx. We first computationally identified 55 such clusters, conserved between the two Ciona genomes. In vivo assay of the activity of 19 hits identified three novel early neural enhancers, all located next to genes coexpressed with Otx. Optimization of ETS and GATA binding sites was not always sufficient to confer activity to inactive clusters. Rather, a dinucleotide sequence code associated to nucleosome depletion showed a robust correlation with enhancer potential. Identification of a large collection of Ciona regulatory regions revealed that predicted nucleosome depletion constitutes a general signature of Ciona enhancers, which is conserved between orthologous loci in the two Ciona genomes and which partitions conserved noncoding sequences into a major nucleosome-bound fraction and a minor nucleosome-free fraction with higher cis-regulatory potential. We also found this signature in a large fraction of short Drosophila cis-regulatory modules. CONCLUSION: This study indicates that a sequence-based dinucleotide signature, previously associated with nucleosome depletion and independent of transcription factor binding sites, contributes to the definition of a local cis-regulatory potential in two metazoa, Ciona intestinalis and Drosophila melanogaster.


Assuntos
Elementos Reguladores de Transcrição/fisiologia , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/fisiologia , Ciona intestinalis/genética , Ciona intestinalis/fisiologia , Sequência Conservada/genética , Sequência Conservada/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Elementos Facilitadores Genéticos/genética , Elementos Facilitadores Genéticos/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/fisiologia , Genes Controladores do Desenvolvimento/genética , Genes Controladores do Desenvolvimento/fisiologia , Genoma/genética , Humanos , Neurônios/fisiologia , Nucleossomos/genética , Nucleossomos/fisiologia , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/fisiologia , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/fisiologia
10.
PLoS One ; 2(9): e916, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17878951

RESUMO

BACKGROUND: The past few years have seen a vast increase in the amount of genomic data available for a growing number of taxa, including sets of full length cDNA clones and cis-regulatory sequences. Large scale cross-species comparisons of protein function and cis-regulatory sequences may help to understand the emergence of specific traits during evolution. PRINCIPAL FINDINGS: To facilitate such comparisons, we developed a Gateway compatible vector set, which can be used to systematically dissect cis-regulatory sequences, and overexpress wild type or tagged proteins in a variety of chordate systems. It was developed and first characterised in the embryos of the ascidian Ciona intestinalis, in which large scale analyses are easier to perform than in vertebrates, owing to the very efficient embryo electroporation protocol available in this organism. Its use was then extended to fish embryos and cultured mammalian cells. CONCLUSION: This versatile vector set opens the way to the mid- to large-scale comparative analyses of protein function and cis-regulatory sequences across chordate evolution. A complete user manual is provided as supplemental material.


Assuntos
Ciona intestinalis/embriologia , Vertebrados/embriologia , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , DNA Complementar , Fases de Leitura Aberta , Sequências Reguladoras de Ácido Nucleico
11.
PLoS Biol ; 4(7): e225, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16787106

RESUMO

The vertebrate peripheral nervous system (PNS) originates from neural crest and placodes. While its developmental origin is the object of intense studies, little is known concerning its evolutionary history. To address this question, we analyzed the formation of the larval tail PNS in the ascidian Ciona intestinalis. The tail PNS of Ciona is made of sensory neurons located within the epidermis midlines and extending processes in the overlying tunic median fin. We show that each midline corresponds to a single longitudinal row of epidermal cells and neurons sharing common progenitors. This simple organization is observed throughout the tail epidermis, which is made of only eight single-cell rows, each expressing a specific genetic program. We next demonstrate that the epidermal neurons are specified in two consecutive steps. During cleavage and gastrula stages, the dorsal and ventral midlines are independently induced by FGF9/16/20 and the BMP ligand ADMP, respectively. Subsequently, Delta/Notch-mediated lateral inhibition controls the number of neurons formed within these neurogenic regions. These results provide a comprehensive overview of PNS formation in ascidian and uncover surprising similarities between the fate maps and embryological mechanisms underlying formation of ascidian neurogenic epidermis midlines and the vertebrate median fin.


Assuntos
Ciona intestinalis/embriologia , Neurônios Aferentes/citologia , Animais , Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Epiderme/embriologia , Epiderme/inervação , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Crista Neural/embriologia , Neurônios Aferentes/metabolismo , Sistema Nervoso Periférico/embriologia , Receptores Notch/metabolismo , Proteínas Recombinantes , Transdução de Sinais , Xenopus
12.
Development ; 130(20): 4919-29, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12930779

RESUMO

Heparan sulphate proteoglycans such as glypicans are essential modulators of intercellular communication during embryogenesis. In Xenopus laevis embryos, the temporal and spatial distribution of Glypican 4 (Gpc4) transcripts during gastrulation and neurulation suggests functions in early development of the central nervous system. We have functionally analysed the role of Xenopus Gpc4 by using antisense morpholino oligonucleotides and show that Gpc4 is part of the signalling network that patterns the forebrain. Depletion of GPC4 protein results in a pleiotropic phenotype affecting both primary axis formation and early patterning of the anterior central nervous system. Molecular analysis shows that posterior axis elongation during gastrulation is affected in GPC4-depleted embryos, whereas head and neural induction are apparently normal. During neurulation, loss of GPC4 disrupts expression of dorsal forebrain genes, such as Emx2, whereas genes marking the ventral forebrain and posterior central nervous system continue to be expressed. This loss of GPC4 activity also causes apoptosis of forebrain progenitors during neural tube closure. Biochemical studies establish that GPC4 binds FGF2 and modulates FGF signal transduction. Inhibition of FGF signal transduction, by adding the chemical SU5402 to embryos from neural plate stages onwards, phenocopies the loss of gene expression and apoptosis in the forebrain. We propose that GPC4 regulates dorsoventral forebrain patterning by positive modulation of FGF signalling.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Prosencéfalo/embriologia , Proteínas de Xenopus , Animais , Padronização Corporal/fisiologia , Gástrula/metabolismo , Glipicanas , Proteoglicanas de Heparan Sulfato/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Prosencéfalo/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição , Xenopus
13.
Development ; 129(5): 1119-29, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11874908

RESUMO

We have carried out a genetic screen designed to isolate regulators of teashirt expression. One of these regulators is the Grunge gene, which encodes a protein with motifs found in human arginine-glutamic acid dipeptide repeat, Metastasis-associated-like and Atrophin-1 proteins. Grunge is the only Atrophin-like protein in Drosophila, whereas several exist in humans. We provide evidence that Grunge is required for the proper regulation of teashirt but also has multiple activities in fly development. First, Grunge is crucial for correct segmentation during embryogenesis via a failure in the repression of at least four segmentation genes known to regulate teashirt. Second, Grunge acts positively to regulate teashirt expression in proximoventral parts of the leg. Grunge has other regulatory functions in the leg, including the patterning of ventral parts along the entire proximodistal axis and the proper spacing of bristles in all regions.


Assuntos
Proteínas de Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/genética , Genes de Insetos , Histona Desacetilases , Proteínas Repressoras , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Padronização Corporal , Proteínas de Transporte/genética , Extremidades/embriologia , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Proteínas Proto-Oncogênicas/genética , Transativadores , Proteína Wnt1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA