Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35588060

RESUMO

The Aedes aegypti mosquito transmits both dengue virus (DENV) and Zika virus (ZIKV) . Individuals in endemic areas are at risk for infection with both viruses, as well as for repeated DENV infection. In the presence of anti-DENV antibodies, outcomes of secondary DENV infection range from mild to life threatening. Furthermore, the role of cross-reactive antibodies on the course of ZIKV infection remains unclear. We assessed the ability of cross-reactive DENV mAbs or polyclonal immunoglobulin isolated after DENV vaccination to upregulate type I IFN production by plasmacytoid DCs (pDCs) in response to both heterotypic DENV- and ZIKV-infected cells. We found a range in the ability of antibodies to increase pDC IFN production and a positive correlation between IFN production and the ability of an antibody to bind to the infected cell surface. Engagement of Fc receptors on the pDC and engagement of epitope on the infected cell by the Fab portion of the same antibody molecule was required to mediate increased IFN production by providing specificity to and promoting pDC sensing of DENV or ZIKV. This represents a mechanism independent of neutralization by which preexisting cross-reactive DENV antibodies could protect a subset of individuals from severe outcomes during secondary heterotypic DENV or ZIKV infection.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Reações Cruzadas , Humanos
2.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35104245

RESUMO

Benchmarks for protective immunity from infection or severe disease after SARS-CoV-2 vaccination are still being defined. Here, we characterized virus neutralizing and ELISA antibody levels, cellular immune responses, and viral variants in 4 separate groups: healthy controls (HCs) weeks (early) or months (late) following vaccination in comparison with symptomatic patients with SARS-CoV-2 after partial or full mRNA vaccination. During the period of the study, most symptomatic breakthrough infections were caused by the SARS-CoV-2 Alpha variant. Neutralizing antibody levels in the HCs were sustained over time against the vaccine parent virus but decreased against the Alpha variant, whereas IgG titers and T cell responses against the parent virus and Alpha variant declined over time. Both partially and fully vaccinated patients with symptomatic infections had lower virus neutralizing antibody levels against the parent virus than the HCs, similar IgG antibody titers, and similar virus-specific T cell responses measured by IFN-γ. Compared with HCs, neutralization activity against the Alpha variant was lower in the partially vaccinated infected patients and tended to be lower in the fully vaccinated infected patients. In this cohort of breakthrough infections, parent virus neutralization was the superior predictor of breakthrough infections with the Alpha variant of SARS-CoV-2.


Assuntos
Imunidade Adaptativa , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/farmacologia , COVID-19/virologia , SARS-CoV-2/imunologia , Vacinação/métodos , Vacinas Sintéticas/farmacologia , Vacinas de mRNA/farmacologia , Adulto , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Vigilância da População , Estudos Retrospectivos , Estados Unidos/epidemiologia , Adulto Jovem
3.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33658340

RESUMO

HIV-1 infection persists in humans despite expression of antiviral type 1 interferons (IFN). Even exogenous administration of IFNα only marginally reduces HIV-1 abundance, raising the hypothesis that people living with HIV-1 (PLWH) are refractory to type 1 IFN. We demonstrated type 1 IFN refractoriness in CD4+ and CD8+ T cells isolated from HIV-1 infected persons by detecting diminished STAT1 phosphorylation (pSTAT1) and interferon-stimulated gene (ISG) induction upon type 1 IFN stimulation compared to healthy controls. Importantly, HIV-1 infected people who were virologically suppressed with antiretrovirals also showed type 1 IFN refractoriness. We found that USP18 levels were elevated in people with refractory pSTAT1 and ISG induction and confirmed this finding ex vivo in CD4+ T cells from another cohort of HIV-HCV coinfected persons who received exogenous pegylated interferon-α2b in a clinical trial. We used a cell culture model to recapitulate type 1 IFN refractoriness in uninfected CD4+ T cells that were conditioned with media from HIV-1 inoculated PBMCs, inhibiting de novo infection with antiretroviral agents. In this model, RNA interference against USP18 partly restored type 1 IFN responses in CD4+ T cells. We found evidence of type 1 IFN refractoriness in PLWH irrespective of virologic suppression that was associated with upregulated USP18, a process that might be therapeutically targeted to improve endogenous control of infection.ImportancePeople living with HIV-1 (PLWH) have elevated constitutive expression of type 1 interferons (IFN). However, it is unclear whether this impacts downstream innate immune responses. We identified refractory responses to type 1 IFN stimulation in T cells from PLWH, independent of antiretroviral treatment. Type 1 IFN refractoriness was linked to elevated USP18 levels in the same cells. Moreover, we found that USP18 levels predicted the anti-HIV-1 effect of type 1 IFN-based therapy on PLWH. In vitro, we demonstrated that refractory type 1 IFN responses were transferrable to HIV-1 uninfected target CD4+ T cells, and this phenomenon was mediated by type 1 IFN from HIV-1 infected cells. Type 1 IFN responses were partially restored by USP18 knockdown. Our findings illuminate a new mechanism by which HIV-1 contributes to innate immune dysfunction in PLWH, through the continuous production of type 1 IFN that induces a refractory state of responsiveness.

4.
N Engl J Med ; 384(6): 541-549, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33567193

RESUMO

BACKGROUND: A safe and effective vaccine to prevent chronic hepatitis C virus (HCV) infection is a critical component of efforts to eliminate the disease. METHODS: In this phase 1-2 randomized, double-blind, placebo-controlled trial, we evaluated a recombinant chimpanzee adenovirus 3 vector priming vaccination followed by a recombinant modified vaccinia Ankara boost; both vaccines encode HCV nonstructural proteins. Adults who were considered to be at risk for HCV infection on the basis of a history of recent injection drug use were randomly assigned (in a 1:1 ratio) to receive vaccine or placebo on days 0 and 56. Vaccine-related serious adverse events, severe local or systemic adverse events, and laboratory adverse events were the primary safety end points. The primary efficacy end point was chronic HCV infection, defined as persistent viremia for 6 months. RESULTS: A total of 548 participants underwent randomization, with 274 assigned to each group. There was no significant difference in the incidence of chronic HCV infection between the groups. In the per-protocol population, chronic HCV infection developed in 14 participants in each group (hazard ratio [vaccine vs. placebo], 1.53; 95% confidence interval [CI], 0.66 to 3.55; vaccine efficacy, -53%; 95% CI, -255 to 34). In the modified intention-to-treat population, chronic HCV infection developed in 19 participants in the vaccine group and 17 in placebo group (hazard ratio, 1.66; 95% CI, 0.79 to 3.50; vaccine efficacy, -66%; 95% CI, -250 to 21). The geometric mean peak HCV RNA level after infection differed between the vaccine group and the placebo group (152.51×103 IU per milliliter and 1804.93×103 IU per milliliter, respectively). T-cell responses to HCV were detected in 78% of the participants in the vaccine group. The percentages of participants with serious adverse events were similar in the two groups. CONCLUSIONS: In this trial, the HCV vaccine regimen did not cause serious adverse events, produced HCV-specific T-cell responses, and lowered the peak HCV RNA level, but it did not prevent chronic HCV infection. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT01436357.).


Assuntos
Anticorpos Anti-Hepatite C/sangue , Hepatite C Crônica/prevenção & controle , Imunogenicidade da Vacina , Vacinas contra Hepatite Viral/imunologia , Adenovirus dos Símios/genética , Adolescente , Adulto , Animais , Método Duplo-Cego , Feminino , Vetores Genéticos , Hepatite C Crônica/epidemiologia , Hepatite C Crônica/imunologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Pan troglodytes , Abuso de Substâncias por Via Intravenosa , Linfócitos T/imunologia , Vacinas Sintéticas/imunologia , Vacinas contra Hepatite Viral/efeitos adversos , Adulto Jovem
5.
Nucleic Acids Res ; 48(8): 4435-4447, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170294

RESUMO

Cyclic-G/AMP (cGAMP) synthase (cGAS) triggers host innate immune responses against cytosolic double-stranded (ds)DNA arising from genotoxic stress and pathogen invasion. The canonical activation mechanism of cGAS entails dsDNA-binding and dimerization. Here, we report an unexpected activation mechanism of cGAS in which Mn2+ activates monomeric cGAS without dsDNA. Importantly, the Mn2+-mediated activation positively couples with dsDNA-dependent activation in a concerted manner. Moreover, the positive coupling between Mn2+ and dsDNA length-dependent activation requires the cognate ATP/GTP substrate pair, while negative-cooperativity suppresses Mn2+ utilization by either ATP or GTP alone. Additionally, while Mn2+ accelerates the overall catalytic activity, dsDNA length-dependent dimerization specifically accelerates the cyclization of cGAMP. Together, we demonstrate how the intrinsic allostery of cGAS efficiently yet precisely tunes its activity.


Assuntos
DNA/metabolismo , Manganês , Nucleotidiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Biocatálise , Linhagem Celular , DNA/química , Ativação Enzimática , Humanos , Nucleotidiltransferases/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA