Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Control ; 30: 10732748231163648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895113

RESUMO

INTRODUCTION: Classical Philadelphia-negative myeloproliferative neoplasm (MPN) includes Essential Thrombocythemia (ET), Polycythemia Vera (PV) and Primary Myelofibrosis (PMF). The JAK2V617F mutation is part of the major criteria for diagnosis of MPN. WT1 is reported to be highly overexpressed in most hematological malignancy. Our aim was to explore the combination value of JAK2V617F allele burden and WT1 expression in distinguishing the subtype of MPN patients. METHODS: Allele specific real-time quantitative fluorescence PCR (AS-qPCR) was conducted to detect JAK2V617F allele burden. WT1 expression was assessed by RQ-PCR. Our study is a retrospective study. RESULTS: JAK2V617F allele burden and WT1 expression were different in MPN subgroups. The expression of WT1 in PMF and PV is higher than in ET. JAK2V617F allele burden in PMF and PV is also higher than in ET. ROC analysis indicated that combination of JAK2V617F allele burden and WT1 expression to discriminate ET and PV, ET and PMF, PV and PMF is 0.956, 0.871, 0.737 respectively. Furthermore, their ability to distinguish ET patients with high Hb levels from PV patients with high platelet counts is 0.891. CONCLUSIONS: Our data revealed that combination of JAK2V617F allele burden and WT1 expression is useful in distinguishing the subtype of MPN patients.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Trombocitemia Essencial , Humanos , Alelos , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Estudos Retrospectivos , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/genética , Proteínas WT1/genética
2.
J Cancer Res Clin Oncol ; 149(8): 4225-4242, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36056952

RESUMO

PURPOSE: Acute myeloid leukemia (AML) is one of the most common neoplasms in adults, and it is difficult to achieve satisfactory results with conventional drugs. Here, we synthesized a novel organic arsenic derivative MZ2 and evaluated its ability to remodel energy metabolism to achieve anti-leukemia. METHODS: MZ2 was characterized by the average 1-min full mass spectra analysis. Biological methods such as Western blot, qPCR, flow cytometry and confocal microscopy were used to assess the mode and mechanism of MZ2-induced death. The in vivo efficacy of MZ2 was assessed by constructing a patient-derived xenograft (PDX) AML model. RESULTS: Unlike the precursor organic arsenical Z2, MZ2 can effectively reduce the level of aerobic glycolysis. Our in-depth found that MZ2 inhibited the expression of PDK2 in a dose-dependent manner and did not affect the expression of LDHA, another key enzyme of the glycolytic pathway. MZ2 reconstituted energy metabolism to induce the generation of mitochondrial ROS (mtROS) and then triggerd intrinsic apoptosis pathway. We also assessed whether MZ2 generates autophagy and results showed that MZ2 can induce autophagy of AML cells, which may be associated with the precursor organic arsenic drug. In vivo, MZ2 effectively attenuated leukemia progression in mice, and immunohistochemical results suggested its PDK2 inhibitory effect. CONCLUSION: In summary, the novel organic arsine derivative MZ2 exhibited excellent anti-tumor effects in acute myeloid leukemia, which may provide a potential strategy for the treatment of acute myeloid leukemia.


Assuntos
Arsênio , Arsenicais , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Arsênio/farmacologia , Arsênio/uso terapêutico , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Apoptose , Arsenicais/farmacologia , Arsenicais/uso terapêutico , Proliferação de Células
3.
Front Med (Lausanne) ; 9: 844350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755044

RESUMO

The relationship between newly diagnosed acute leukemia (AL) and heart-related lesions remains unclear. This study aimed to investigate baseline cardiac function and risk of cardiovascular diseases (CVDs) in patients with new-onset AL, and provide data on cardiac management strategies for patients with AL. We retrospectively collected data on baseline characteristics, echocardiography, and biochemical blood indicators (e.g., myocardial enzymes) from 408 patients, 200 with newly diagnosed AL, 103 with coronary artery disease (CAD), and 105 controls from January 1, 2015 to August 31, 2019. The creatine kinase isoenzyme myocardial band, lactate dehydrogenase, highly sensitive troponin-I, and B-type natriuretic peptide levels and left ventricular internal diameter (LVID) were significantly higher in patients with newly diagnosed AL than in the control group. The degree of cardiac damage was lower in newly diagnosed AL patients than in CAD patients. The best predictor of heart damage was LVID (AUC [area under the curve] = 0.709; 95% CI [confidence interval]: 0.637-0.781; p < 0.001), and independent prognostic risk factors were age and ejection fraction (HR [hazard ratio] = 1.636; 95% CI: 1.039-2.575; p = 0.033). The ratio of leukemia blasts among patients with AL was positively correlated with cardiac damage. Our data indicated that newly diagnosed AL patients had certain myocardial damage before treatment. Clinicians need to pay attention to these manifestations, which may be related to the prognosis.

4.
Chem Sci ; 12(5): 1843-1850, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34163948

RESUMO

Small-molecule subcellular organelle-targeting theranostic probes are crucial for early disease diagnosis and treatment. The imaging window of these molecules is mainly focused on the visible and near-infrared region (below ∼900 nm) which limits the tissue penetration depth and therapeutic effects. Herein, a novel NIR-II small-molecule probe H4-PEG-Glu with a thiopyrylium cation was synthesized. H4-PEG-Glu not only can quickly and effectively image mitochondria in acute myeloid leukemia (AML) cells, and induce G0/G1 phase arrest by the intrinsic mitochondrial apoptosis pathway w/o irradiation, but also exhibit moderate cytotoxicity against AML cancer cells in a dose dependent-manner without laser irradiation. The THP-1 cells treated with H4-PEG-Glu upon NIR laser irradiation showed enhanced chemo- and photothermal therapy (CPTT) with 93.07% ± 6.43 apoptosis by Annexin V staining. Meanwhile, H4-PEG-Glu displayed high synergistic CPTT effects in vivo, as well as specific NIR-II tumor imaging in AML patient derived PDX mouse models for the first time. Our work lays down a solid foundation for designing small-molecule NIR-II mitochondria-selective theranostic probes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA