Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 209(11): 2160-2171, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426972

RESUMO

More than 2 billion people worldwide are infected with helminths. Thus, it is possible for individuals to experience concomitant infection with helminth and intracellular microbes. Although the helminth-induced type 2 response can suppress type 1 proinflammatory responses required for the immunity against intracellular pathogens in the context of a coinfection, conflicting evidence suggest that helminth infection can enhance antimicrobial immunity. Using a coinfection model with the intestinal helminth Heligmosomoides polygyrus followed by infection with Toxoplasma gondii in Mus Musculus, we showed that the complex and dynamic effect of helminth infection is highly suppressive during the innate phase (days 0-3) of T. gondii infection and less stringent during the acute phase (d10). Helminth coinfection had a strong suppressive effect on the neutrophil, monocytic, and early IFN-γ/IL-12 responses. The IFN-γ response was later restored by compensatory production from T cells despite decreased effector differentiation of T. gondii-specific CD8 T cells. In accordance with the attenuated IFN-γ response, parasite loads were elevated during the acute phase (d10) of T. gondii infection but were transiently controlled by the compensatory T cell response. Unexpectedly, 40% of helminth-coinfected mice exhibited a sustained weight loss phenotype during the postacute phase (d14-18) that was not associated with T. gondii outgrowth, indicating that coinfection led to decreased disease tolerance during T. gondii infection. Our work uncovers the dynamic nature of the helminth immunomodulatory effects on concomitant infections or immune responses and unveils a loss of disease tolerance phenotype triggered by coinfection with intestinal helminth.


Assuntos
Coinfecção , Nematospiroides dubius , Toxoplasma , Toxoplasmose , Animais , Camundongos , Tolerância Imunológica
2.
J Immunol ; 207(6): 1507-1512, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400524

RESUMO

Resistance and tolerance are vital for survivability of the host-pathogen relationship. Virulence during Toxoplasma infection in mice is mediated by parasite kinase-dependent antagonism of IFN-γ-induced host resistance. Whether avirulence requires expression of parasite factors that induce host tolerance mechanisms or is a default status reflecting the absence of resistance-interfering factors is not known. In this study, we present evidence that avirulence in Toxoplasma requires parasite engagement of the scavenger receptor CD36. CD36 promotes macrophage tropism but is dispensable for the development of resistance mechanisms. Instead CD36 is critical for re-establishing tissue homeostasis and survival following the acute phase of infection. The CD36-binding capacity of T. gondii strains is negatively controlled by the virulence factor, ROP18. Thus, the absence of resistance-interfering virulence factors and the presence of tolerance-inducing avirulence factors are both required for long-term host-pathogen survival.


Assuntos
Antígenos CD36/deficiência , Antígenos CD36/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/parasitologia , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose Animal/imunologia , Animais , Antígenos CD36/genética , Células CHO , Cricetulus , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Tolerância Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Células RAW 264.7 , Toxoplasmose Animal/metabolismo , Toxoplasmose Animal/parasitologia , Virulência/genética , Fatores de Virulência/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(35): E8305-E8314, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104351

RESUMO

The vacuole is an essential organelle in plant cells, and its dynamic nature is important for plant growth and development. Homotypic membrane fusion is required for vacuole biogenesis, pollen germination, stomata opening, and gravity perception. Known components of the vacuole fusion machinery in eukaryotes include SNARE proteins, Rab GTPases, phosphoinositides, and the homotypic fusion and vacuolar protein sorting (HOPS) tethering complex. HOPS function is not well characterized in plants, but roles in embryogenesis and pollen tube elongation have been reported. Here, we show that Arabidopsis HOPS subunits VPS33 and VPS41 accumulate in late endosomes and that VPS41, but not VPS33, accumulates in the tonoplast via a wortmannin-sensitive process. VPS41 and VPS33 proteins bind to liposomes, but this binding is inhibited by phosphatidylinosiltol-3-phosphate [PtdIns(3)P] and PtdIns(3,5)P2, which implicates a nonconserved mechanism for HOPS recruitment in plants. Inducible knockdown of VPS41 resulted in dramatic vacuole fragmentation phenotypes and demonstrated a critical role for HOPS in vacuole fusion. Furthermore, we provide evidence for genetic interactions between VPS41 and VTI11 SNARE that regulate vacuole fusion, and the requirement of a functional SNARE complex for normal VPS41 and VPS33 localization. Finally, we provide evidence to support VPS33 and SYP22 at the initial stage for HOPS-SNARE interactions, which is similar to other eukaryotes. These results highlight both conserved and specific mechanisms for HOPS recruitment and function during vacuole fusion in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Membrana/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Vacúolos/genética , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA