Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 116(4): 916-926, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642109

RESUMO

PURPOSE: In proton therapy, the clinical application of linear energy transfer (LET) optimization remains contentious, in part because of challenges associated with the definition and calculation of LET and its exact relationship with relative biological effectiveness (RBE) because of large variation in experimental in vitro data. This has raised interest in other metrics with favorable properties for biological optimization, such as the number of proton track ends in a voxel. In this work, we propose a novel model for clinical calculations of RBE, based on proton track end counts. METHODS AND MATERIALS: We developed an effective dose concept to translate between the total proton track-end count per unit mass in a voxel and a proton RBE value. Dose, track end, and dose-averaged LET (LETd) distributions were simulated using Monte Carlo models for a series of water phantoms, in vitro radiobiological studies, and patient treatment plans. We evaluated the correlation between track ends and regions of elevated biological effectiveness in comparison to LETd-based models of RBE. RESULTS: Track ends were found to correlate with biological effects in in vitro experiments with an accuracy comparable to LETd. In patient simulations, our track end model identified the same biological hotspots as predicted by LETd-based radiobiological models of proton RBE. CONCLUSIONS: These results suggest that, for clinical optimization and evaluation, an RBE model based on proton track end counts may match LETd-based models in terms of information provided while also offering superior statistical properties.


Assuntos
Terapia com Prótons , Prótons , Humanos , Eficiência Biológica Relativa , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos , Transferência Linear de Energia , Método de Monte Carlo
2.
Med Phys ; 48(9): 5406-5413, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34101858

RESUMO

PURPOSE: MR-guided radiotherapy has different requirements for the images than diagnostic radiology, thus requiring development of novel imaging sequences. MRI simulation is an excellent tool for optimizing these new sequences; however, currently available software does not provide all the necessary features. In this paper, we present a digital framework for testing MRI sequences that incorporates anatomical structure, respiratory motion, and realistic presentation of MR physics. METHODS: The extended Cardiac-Torso (XCAT) software was used to create T1 , T2 , and proton density maps that formed the anatomical structure of the phantom. Respiratory motion model was based on the XCAT deformation vector fields, modified to create a motion model driven by a respiration signal. MRI simulation was carried out with JEMRIS, an open source Bloch simulator. We developed an extension for JEMRIS, which calculates the motion of each spin independently, allowing for deformable motion. RESULTS: The performance of the framework was demonstrated through simulating the acquisition of a two-dimensional (2D) cine and demonstrating expected motion ghosts from T2 weighted spin echo acquisitions with different respiratory patterns. All simulations were consistent with behavior previously described in literature. Simulations with deformable motion were not more time consuming than with rigid motion. CONCLUSIONS: We present a deformable four-dimensional (4D) digital phantom framework for MR sequence development. The framework incorporates anatomical structure, realistic breathing patterns, deformable motion, and Bloch simulation to achieve accurate simulation of MRI. This method is particularly relevant for testing novel imaging sequences for the purpose of MR-guided radiotherapy in lungs and abdomen.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Simulação por Computador , Movimento (Física) , Imagens de Fantasmas
3.
Magn Reson Med ; 83(2): 765-775, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31441537

RESUMO

PURPOSE: The design and performance of a novel head coil setup for 31 P spectroscopy at ultra-high field strengths (7T) is presented. The described system supports measurements at both the 1 H and 31 P resonance frequencies. METHODS: The novel coil consists of 2, actively detunable, coaxial birdcage coils to give homogeneous transmit, combined with a double resonant 30 channel receive array. This allows for anatomical imaging combined with 31 P acquisitions over the whole head, without changing coils or disturbing the subject. A phosphate buffer phantom and 3 healthy volunteers were scanned with a pulse acquire CSI sequence using both the novel array coil and a conventional transceiver birdcage. Four different methods of combining the array channels were compared at 3 different levels of SNR. RESULTS: The novel coil setup delivers significantly increased 31 P SNR in the peripheral regions of the brain, reaching up to factor 8, while maintaining comparable performance relative to the birdcage in the center. CONCLUSIONS: The new system offers the potential to acquire whole brain 31 P MRSI with superior signal relative to the standard options.


Assuntos
Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Fósforo/química , Razão Sinal-Ruído , Desenho de Equipamento , Voluntários Saudáveis , Humanos , Imagens de Fantasmas , Prótons
4.
Neuro Oncol ; 20(9): 1262-1271, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-29438510

RESUMO

Background: Isocitrate dehydrogenase (IDH) mutations result in abnormal accumulation of 2-hydroxyglutarate (2HG) in gliomas that can be detected by MRS. We examined the diagnostic accuracy of 2HG single-voxel spectroscopy (SVS) and chemical shift imaging (CSI) in both newly diagnosed and posttreatment settings. Methods: Long echo time (97 ms) SVS and CSI were acquired in 85 subjects, including a discovery cohort of 39 patients who had postoperative residual or recurrent glioma with confirmed IDH-mutation status and 6 normal volunteers, a prospective preoperative validation cohort of 24 patients with newly diagnosed brain mass, and a prospective recurrent-lesion validation cohort of 16 previously treated IDH-mutant glioma patients with suspected tumor recurrence. The optimal thresholds for both methods in diagnosing IDH status were determined by receiver operating characteristic analysis in the discovery cohort and then applied to the 2 validation cohorts to assess the diagnostic performance. Results: The optimal 2HG/creatine thresholds of SVS and 75th percentile CSI for IDH mutations were 0.11 and 0.23, respectively. When applied to the validation sets, the sensitivity, specificity, and accuracy in distinguishing IDH-mutant gliomas in the preoperative cohort were 85.71%, 100.00%, and 94.12% for SVS, and 100.00%, 69.23%, and 81.82% for CSI, respectively. In the recurrent-lesion cohort, the sensitivity, specificity, and accuracy for discriminating IDH-positive recurrent gliomas were 40.00%, 62.50%, and 53.85% for SVS, and 66.67%, 100.00%, and 86.67% for CSI, respectively. Conclusions: 2HG MRS provides diagnostic utility for IDH-mutant gliomas both preoperatively and at time of suspected tumor recurrence. SVS has a better diagnostic performance for untreated IDH-mutant gliomas, whereas CSI demonstrates greater performance in identifying recurrent tumors.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Glutaratos/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Recidiva Local de Neoplasia/patologia , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Feminino , Seguimentos , Glioma/diagnóstico por imagem , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Estudos Prospectivos , Curva ROC , Adulto Jovem
5.
J Neuroimaging ; 27(1): 23-28, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27601075

RESUMO

PURPOSE: Averaging multiple repetitions to improve signal-to-noise ratio is common practice in magnetic resonance spectroscopy (MRS). However, temporal variations in scanner B0 due to motion or gradient heating may cause spectra to become misaligned, broadening and distorting peaks and impacting on processing and quantification. We present a comparison using in vivo data of different methods for correcting these errors. METHODS: Three different correction methods were applied to 53 brain scans: residual water peak alignment, creatine fitting, and spectral registration. In 32 of 53 subjects, diffusion tensor imaging (DTI) was acquired prior to the MRS scan. We compared the resulting linewidths to find the most effective technique. In addition, the impact on metabolite concentration estimates was evaluated. RESULTS: MRS data acquired after DTI imaging exhibited a frequency drift four times higher than data without DTI, resulting in changes to metabolite concentrations, particularly glutamate/glutamine. All three correction methods produced significantly improved linewidths relative to uncorrected data, with spectral registration performing best by a small margin. CONCLUSION: Frequency correction is an important step in processing MRS data, significantly impacting metabolite quantification, particularly after echo-planar imaging that often occurs with MRS scans in clinical studies. Spectral registration proved most effective at frequency correction.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Razão Sinal-Ruído , Algoritmos , Imagem de Tensor de Difusão , Humanos , Campos Magnéticos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA