Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Cytotherapy ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38842968

RESUMO

Although several cell-based therapies have received FDA approval, and others are showing promising results, scalable, and quality-driven reproducible manufacturing of therapeutic cells at a lower cost remains challenging. Challenges include starting material and patient variability, limited understanding of manufacturing process parameter effects on quality, complex supply chain logistics, and lack of predictive, well-understood product quality attributes. These issues can manifest as increased production costs, longer production times, greater batch-to-batch variability, and lower overall yield of viable, high-quality cells. The lack of data-driven insights and decision-making in cell manufacturing and delivery is an underlying commonality behind all these problems. Data collection and analytics from discovery, preclinical and clinical research, process development, and product manufacturing have not been sufficiently utilized to develop a "systems" understanding and identify actionable controls. Experience from other industries shows that data science and analytics can drive technological innovations and manufacturing optimization, leading to improved consistency, reduced risk, and lower cost. The cell therapy manufacturing industry will benefit from implementing data science tools, such as data-driven modeling, data management and mining, AI, and machine learning. The integration of data-driven predictive capabilities into cell therapy manufacturing, such as predicting product quality and clinical outcomes based on manufacturing data, or ensuring robustness and reliability using data-driven supply-chain modeling could enable more precise and efficient production processes and lead to better patient access and outcomes. In this review, we introduce some of the relevant computational and data science tools and how they are being or can be implemented in the cell therapy manufacturing workflow. We also identify areas where innovative approaches are required to address challenges and opportunities specific to the cell therapy industry. We conclude that interfacing data science throughout a cell therapy product lifecycle, developing data-driven manufacturing workflow, designing better data collection tools and algorithms, using data analytics and AI-based methods to better understand critical quality attributes and critical-process parameters, and training the appropriate workforce will be critical for overcoming current industry and regulatory barriers and accelerating clinical translation.

2.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38644993

RESUMO

Multiple myeloma (MM), a cancer of bone marrow plasma cells, is the second-most common hematological malignancy. However, despite immunotherapies like chimeric antigen receptor (CAR)-T cells, relapse is nearly universal. The bone marrow (BM) microenvironment influences how MM cells survive, proliferate, and resist treatment. Yet, it is unclear which BM niches give rise to MM pathophysiology. Here, we present a 3D microvascularized culture system, which models the endosteal and perivascular bone marrow niches, allowing us to study MM-stroma interactions in the BM niche and model responses to therapeutic CAR-T cells. We demonstrated the prolonged survival of cell line-based and patient-derived multiple myeloma cells within our in vitro system and successfully flowed in donor-matched CAR-T cells. We then measured T cell survival, differentiation, and cytotoxicity against MM cells using a variety of analysis techniques. Our MM-on-a-chip system could elucidate the role of the BM microenvironment in MM survival and therapeutic evasion and inform the rational design of next-generation therapeutics. TEASER: A multiple myeloma model can study why the disease is still challenging to treat despite options that work well in other cancers.

4.
Nat Med ; 29(12): 3120-3126, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919438

RESUMO

Various types of cellular injection have become a popular and costly treatment option for patients with knee osteoarthritis despite a paucity of literature establishing relative efficacy to each other or corticosteroid injections. Here we aimed to identify the safety and efficacy of cell injections from autologous bone marrow aspirate concentrate, autologous adipose stromal vascular fraction and allogeneic human umbilical cord tissue-derived mesenchymal stromal cells, in comparison to corticosteroid injection (CSI). The study was a phase 2/3, four-arm parallel, multicenter, single-blind, randomized, controlled clinical trial with 480 patients with a diagnosis of knee osteoarthritis (Kellgren-Lawrence II-IV). Participants were randomized to the three different arms with a 3:1 distribution. Arm 1: autologous bone marrow aspirate concentrate (n = 120), CSI (n = 40); arm 2: umbilical cord tissue-derived mesenchymal stromal cells (n = 120), CSI (n = 40); arm 3: stromal vascular fraction (n = 120), CSI (n = 40). The co-primary endpoints were the visual analog scale pain score and Knee injury and Osteoarthritis Outcome Score pain score at 12 months versus baseline. Analyses of our primary endpoints, with 440 patients, revealed that at 1 year post injection, none of the three orthobiologic injections was superior to another, or to the CSI control. In addition, none of the four groups showed a significant change in magnetic resonance imaging osteoarthritis score compared to baseline. No procedure-related serious adverse events were reported during the study period. In summary, this study shows that at 1 year post injection, there was no superior orthobiologic as compared to CSI for knee osteoarthritis. ClinicalTrials.gov Identifier: NCT03818737.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/tratamento farmacológico , Dor/tratamento farmacológico , Dor/etiologia , Método Simples-Cego , Resultado do Tratamento
5.
Nanoscale ; 15(45): 18368-18382, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37933197

RESUMO

Understanding the role of fundamental structural engineering of materials in unravelling the underlying rudimentary electronic structure-dependent charge storage mechanisms is crucial for developing new strategic approaches toward high-performance electrochemical energy storage devices. Here, we demonstrate the role of strain engineering by V doping-induced lattice contraction in NiCo2O4 for increasing the energy density and power density of aqueous asymmetric hybrid supercapacitors. For application in energy storage, we demonstrate the influence of electron-deficient V4+/5+ doping in electron-rich Ni2+ sites, which has been found to result in the formation of a hypo-hyper electronically coupled cation pair causing a shift in the d-band and O 2p band centres and distortion of CoO6 octahedra. Optimization of V doping to 3 mol%, achieved by a binder-free one-step hydrothermal method, has yielded a 96% increase in specific capacitance of up to 2316 F g-1 from 1193 F g-1 in pristine materials at 1 A g-1 in a three-electrode configuration with a coulombic efficiency (η%) of 94% and a 24% increase in rate capacity. A two-fold increase in specific capacitance in the pouch cell device, fabricated with a functionalized carbon nanosphere positive electrode, has been observed for the V-doped samples at 1 A g-1 with a η% of 97% and a maximum energy density of 96.3 W h g-1 and a maximum power density of 8733.6 W g-1 which are 41% and 24.3% higher than the pristine device, respectively. Excellent cycling stability of 95.4% capacitance retention has been observed after 6000 cycles. DFT calculations have been carried out to understand the previously unexplored effect of lattice strain on charge transport and quantum capacitance, and ultimately its effect on the transition state kinetics of energy storage faradaic reaction mechanisms. The aim of this work is to establish a fresh perspective on developing a deep understanding of the fundamental electronic and structural properties of materials by drawing in concepts from descriptor models in electrocatalysis to reveal the role of lattice strain and d-band centre tailoring in enabling pseudocapacitive energy storage.

6.
Cytotherapy ; 25(12): 1361-1369, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37725031

RESUMO

BACKGROUND AIMS: Cell therapy is a promising treatment method that uses living cells to address a variety of diseases and conditions, including cardiovascular diseases, neurologic disorders and certain cancers. As interest in cell therapy grows, there is a need to shift to a more efficient, scalable and automated manufacturing process that can produce high-quality products at a lower cost. METHODS: One way to achieve this is using non-invasive imaging and real-time image analysis techniques to monitor and control the manufacturing process. This work presents a machine learning-based image analysis pipeline that includes semantic segmentation and anomaly detection capabilities. RESULTS/CONCLUSIONS: This method can be easily implemented even when given a limited dataset of annotated images, is able to segment cells and debris and can identify anomalies such as contamination or hardware failure.


Assuntos
Aprendizado de Máquina , Semântica , Processamento de Imagem Assistida por Computador/métodos
7.
Bone Rep ; 18: 101656, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425195

RESUMO

Bone is a complex tissue capable of natural repair to injury, however, the healing process is often impaired by the untoward effects of trauma, defects, and disease. Thus, therapeutic modalities, including the use of cells involved in the body's natural healing processes, are investigated to promote or complement natural bone repair. Herein, several modalities and innovative approaches for using mesenchymal stromal cells (MSCs) to treat bone trauma, defects, and diseases are discussed. Given the evidence that supports the promising potential of MSCs, we highlight important considerations for advancing the clinical use of MSCs including the standardization of procedures from the harvest to delivery to patients and realized solutions to manufacturing. A better understanding of the current approaches implemented to address the challenges of using therapeutic MSCs will help improve study designs and, ultimately, achieve effective outcomes for restoring bone health.

8.
Free Radic Biol Med ; 205: 262-274, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37330147

RESUMO

Pro-inflammatory cytokines upregulate the expression of the H2O2-producing NADPH oxidase dual oxidase 2 (DUOX2)2 which, when elevated, adversely affects survival from pancreatic ductal adenocarcinoma (PDAC). Because the cGAS-STING pathway is known to initiate pro-inflammatory cytokine expression following uptake of exogenous DNA, we examined whether activation of cGAS-STING could play a role in the generation of reactive oxygen species by PDAC cells. Here, we found that a variety of exogenous DNA species markedly increased the production of cGAMP, the phosphorylation of TBK1 and IRF3, and the translocation of phosphorylated IRF3 into the nucleus, leading to a significant, IRF3-dependent enhancement of DUOX2 expression, and a significant flux of H2O2 in PDAC cells. However, unlike the canonical cGAS-STING pathway, DNA-related DUOX2 upregulation was not mediated by NF-κB. Although exogenous IFN-ß significantly increased Stat1/2-associated DUOX2 expression, intracellular IFN-ß signaling that followed cGAMP or DNA exposure did not itself increase DUOX2 levels. Finally, DUOX2 upregulation subsequent to cGAS-STING activation was accompanied by the enhanced, normoxic expression of HIF-1α and VEGF-A as well as DNA double strand cleavage, suggesting that cGAS-STING signaling may support the development of an oxidative, pro-angiogenic microenvironment that could contribute to the inflammation-related genetic instability of pancreatic cancer.


Assuntos
Peróxido de Hidrogênio , Neoplasias Pancreáticas , Humanos , Oxidases Duais/genética , Oxidases Duais/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA/metabolismo , Citocinas , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral
9.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37215018

RESUMO

Existing parenteral SARS-CoV-2 vaccines produce only limited mucosal responses, which are essential for reducing transmission and achieving sterilizing immunity. Appropriately designed mucosal boosters could overcome the shortcomings of parenteral vaccines and enhance pre- existing systemic immunity. Here we present a new protein subunit nanovaccine using multiadjuvanted (e.g. RIG-I: PUUC, TLR9: CpG) polysaccharide-amino acid-lipid nanoparticles (PAL-NPs) that can be delivered both intramuscularly (IM) and intranasally (IN) to generate balanced mucosal-systemic SARS-CoV-2 immunity. Mice receiving IM-Prime PUUC+CpG PAL- NPs, followed by an IN-Boost, developed high levels of IgA, IgG, and cellular immunity in the lung, and showed robust systemic humoral immunity. Interestingly, as a purely intranasal vaccine (IN-Prime/IN-Boost), PUUC+CpG PAL-NPs induced stronger lung-specific T cell immunity than IM-Prime/IN-Boost, and a comparable IgA and neutralizing antibodies, although with a lower systemic antibody response, indicating that a fully mucosal delivery route for SARS-CoV-2 vaccination may also be feasible. Our data suggest that PUUC+CpG PAL-NP subunit vaccine is a promising candidate for generating SARS-CoV-2 specific mucosal immunity.

10.
Cytotherapy ; 25(9): 1006-1015, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37061898

RESUMO

BACKGROUND AIMS: In-process monitoring and control of biomanufacturing workflows remains a significant challenge in the development, production, and application of cell therapies. New process analytical technologies must be developed to identify and control the critical process parameters that govern ex vivo cell growth and differentiation to ensure consistent and predictable safety, efficacy, and potency of clinical products. METHODS: This study demonstrates a new platform for at-line intracellular analysis of T-cells. Untargeted mass spectrometry analyses via the platform are correlated to conventional methods of T-cell assessment. RESULTS: Spectral markers and metabolic pathways correlated with T-cell activation and differentiation are detected at early time points via rapid, label-free metabolic measurements from a minimal number of cells as enabled by the platform. This is achieved while reducing the analytical time and resources as compared to conventional methods of T-cell assessment. CONCLUSIONS: In addition to opportunities for fundamental insight into the dynamics of T-cell processes, this work highlights the potential of in-process monitoring and dynamic feedback control strategies via metabolic modulation to drive T-cell activation, proliferation, and differentiation throughout biomanufacturing.


Assuntos
Redes e Vias Metabólicas , Linfócitos T , Espectrometria de Massas , Diferenciação Celular , Proliferação de Células
11.
Biomaterials ; 297: 122097, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37001347

RESUMO

Lung-resident and circulatory lymphoid, myeloid, and stromal cells, expressing various pattern recognition receptors (PRRs), detect pathogen- and danger-associated molecular patterns (PAMPs/DAMPs), and defend against respiratory pathogens and injuries. Here, we report the early responses of murine lungs to nanoparticle-delivered PAMPs, specifically the retinoic acid-inducible gene I (RIG-I) agonist poly-U/UC (PUUC), with or without the TLR4 agonist monophosphoryl lipid A (MPLA). Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we characterized the responses at 4 and 24 h after intranasal administration. Within 4 h, ribosome-associated transcripts decreased in both stromal and immune cells, followed by widespread interferon-stimulated gene (ISG) expression. Using RNA velocity, we show that lung-neutrophils dynamically regulate the synthesis of cytokines like CXCL-10, IL-1α, and IL-1ß. Co-delivery of MPLA and PUUC increased chemokine synthesis and upregulated antimicrobial binding proteins targeting iron, manganese, and zinc in many cell types, including fibroblasts, endothelial cells, and epithelial cells. Overall, our results elucidate the early PAMP-induced cellular responses in the lung and demonstrate that stimulation of the RIG-I pathway, with or without TLR4 agonists, induces a ubiquitous microbial defense state in lung stromal and immune cells. Nanoparticle-delivered combination PAMPs may have applications in intranasal antiviral and antimicrobial therapies and prophylaxis.


Assuntos
Receptor 4 Toll-Like , Transcriptoma , Animais , Camundongos , Células Endoteliais , Moléculas com Motivos Associados a Patógenos , Cinética , Imunidade Inata , Pulmão
12.
J Control Release ; 353: 434-446, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462639

RESUMO

To examine the widely accepted dogma that the eye is an immune-privileged organ that can suppress antigen immunogenicity, we explored systemic immune responses to a model vaccine antigen (tetanus toxoid) delivered to six compartments of the rodent eye (ocular surface, corneal stroma, anterior chamber, subconjunctival space, suprachoroidal space, vitreous body). We discovered that antigens delivered to corneal stroma induced enhanced, rather than suppressed, antigen-specific immune responses, which were 18- to 30-fold greater than conventional intramuscular injection and comparable to intramuscular vaccination with alum adjuvant. Systemic immune responses to antigen delivered to the other ocular compartments were much weaker. The enhanced systemic immune responses after intrastromal injection were related to a sequence of events involving the formation of an antigen "depot" in the avascular stroma, infiltration of antigen-presenting cells, up-regulation of MHC class II and costimulatory molecules CD80/CD86, and induction of lymphangiogenesis in the corneal stroma facilitating sustained presentation of antigen to the lymphatic system. These enhanced immune responses in corneal stroma suggest new approaches to medical interventions for ocular immune diseases and vaccination methods.


Assuntos
Substância Própria , Vacinas , Células Apresentadoras de Antígenos , Imunidade , Antígenos
14.
Sci Rep ; 12(1): 16357, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175595

RESUMO

Pathogens trigger activation of sensors of the innate immune system that initiate molecular signaling enabling appropriate host defense programs. Although recognition of pathogen-specific moieties or PAMPs by specialized receptors of the immune system is well defined for a great number of pathogens, the mechanisms of sensing of pathogen-induced functional perturbations to the host cell remain poorly understood. Here we show that the disruption of endosomal compartments in macrophages by a bacterium or fully synthetic nanoparticles activates stress-response p38MAPK kinase, which triggers execution of cell death of a necrotic type. p38MAPK-mediated necrosis occurs in cells with a compound homozygous deletion of pyroptosis-inducing caspases-1 and -11, apoptotic caspase-8, and necroptosis-inducing receptor-interacting protein kinase-3 (RIPK3), indicating that all of these principal cell death mediators are dispensable for p38MAPK-induced necrosis in response to endosome rupture. p38MAPK-mediated necrosis is suppressed by the receptor-interacting protein kinase 1, RIPK1, and degradation of RIPK1 sensitizes macrophages to necrotic death. Since pathogen-induced cell death of necrotic types is implicated in host defense against infection, our results indicate that functional perturbations in host cells are sensed as a component of the innate immune system.


Assuntos
Moléculas com Motivos Associados a Patógenos , Proteínas Quinases p38 Ativadas por Mitógeno , Caspase 8 , Endossomos , Homozigoto , Humanos , Necrose , Deleção de Sequência
15.
Adv Nanobiomed Res ; 2(7)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35937779

RESUMO

High-affinity antigen-specific B cells are generated within specialized structures, germinal centers (GCs), inside lymphoid organs. In GCs, follicular dendritic cells (FDCs) present antigens on their membrane surface to cognate B cells, inducing rapid proliferation and differentiation of the B cells toward antibody-secreting cells. The FDC's fluid membrane surface allows B cells to "pull" the antigens into clusters and internalize them, a process that frequently involves tearing off and internalizing FDC membrane fragments. To study this process ex vivo, liposomal membranes are used as the antigen-presenting FDC-like fluid lipid surface to activate B cells. In a fully synthetic in vitro GC model (sGC), which uses the microbead-based presentation of the CD40 Ligand and a cytokine cocktail to mimic T follicular helper cell signals to B cells, liposomes presenting a model antigen mimic effectively engage B cell receptors (BCRs) and induce greater BCR clustering compared to soluble antigens, resulting in rapid antigen internalization and proliferation of the B cells. B cells showed GC-like reactions and undergo efficient IgG1 class-switching. Taken together, the results suggest that fluid membrane-bound antigen induces a strong GC response and provides a novel synthetic in vitro system for studying GC biology in health and diseases, and for expanding therapeutic B cells ex vivo.

16.
J Biomed Opt ; 27(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35773755

RESUMO

SIGNIFICANCE: Quantitative oblique back-illumination microscopy (qOBM) is a recently developed label-free imaging technique that enables 3D quantitative phase imaging of thick scattering samples with epi-illumination. Here, we propose dynamic qOBM to achieve functional imaging based on subcellular dynamics, potentially indicative of metabolic activity. We show the potential utility of this novel technique by imaging adherent mesenchymal stromal cells (MSCs) grown in bioreactors, which can help address important unmet needs in cell manufacturing for therapeutics. AIM: We aim to develop dynamic qOBM and demonstrate its potential for functional imaging based on cellular and subcellular dynamics. APPROACH: To obtain functional images with dynamic qOBM, a sample is imaged over a period of time and its temporal signals are analyzed. The dynamic signals display an exponential frequency response that can be analyzed with phasor analysis. Functional images of the dynamic signatures are obtained by mapping the frequency dynamic response to phasor space and color-coding clustered signals. RESULTS: Functional imaging with dynamic qOBM provides unique information related to subcellular activity. The functional qOBM images of MSCs not only improve conspicuity of cells in complex environments (e.g., porous micro-carriers) but also reveal two distinct cell populations with different dynamic behavior. CONCLUSIONS: In this work we present a label-free, fast, and scalable functional imaging approach to study and intuitively display cellular and subcellular dynamics. We further show the potential utility of this novel technique to help monitor adherent MSCs grown in bioreactors, which can help achieve quality-by-design of cell products, a significant unmet need in the field of cell therapeutics. This approach also has great potential for dynamic studies of other thick samples, such as organoids.


Assuntos
Células-Tronco Mesenquimais , Microscopia , Imageamento Tridimensional , Iluminação , Microscopia/métodos
17.
Indian J Endocrinol Metab ; 26(2): 141-148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873939

RESUMO

Objective: Thyroid dermopathy (TD), reportedly encountered in less than 5% of patients with Graves' disease (GD), is supposed to coexist only with thyroid-associated orbitopathy (TAO). However, clinically inapparent TD, detected non-invasively by thermal imaging or ultrasonography, seems to be present in a larger proportion of GD. Histopathological examination (HPE), though considered as gold standard for detecting TD, has not been performed widely to identify subclinical TD in GD. Materials and Methods: In this single-centre, cross-sectional, case-control study, 50 patients with GD (cases) and normal appearing pretibial skin were compared with 45 age- and sex-matched individuals (39 healthy volunteers, 3 with toxic multinodular goitre and 3 with solitary toxic nodule) (control). All patients were evaluated clinically for presence of TAO. Punch biopsy specimens were obtained from the pretibial skin in all 95 participants. Tissue sections were examined under light microscopy for mucin deposition, splitting of collagen fibrils and perivascular lymphocytic infiltration. Results: Sixty per cent of patients with GD demonstrated at least one of the above three histological features, while 52% had any combination of two features and 46% harboured all the three features. Mucin deposition, splitting of collagen fibrils and lymphocytic infiltration were found overall in 52%, 54% and 52% of GD, respectively; 4.4-11.1% of controls also had some evidence of TD on HPE. Subclinical TD was not related to age, duration of disease and TAO in our study. Conclusions: TD, particularly in its subclinical form, Seems to be widely prevalent in GD (46-60%) and exists even in absence of TAO. HPE, though more sensitive than the various non-invasive tests, is not specific (ranges from 89% to 95%) for TD. However, HPE can accurately diagnose TD in appropriate clinical background.

18.
Front Surg ; 9: 934773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874126

RESUMO

Bone non-unions resulting from severe traumatic injuries pose significant clinical challenges, and the biological factors that drive progression towards and healing from these injuries are still not well understood. Recently, a dysregulated systemic immune response following musculoskeletal trauma has been identified as a contributing factor for poor outcomes and complications such as infections. In particular, myeloid-derived suppressor cells (MDSCs), immunosuppressive myeloid-lineage cells that expand in response to traumatic injury, have been highlighted as a potential therapeutic target to restore systemic immune homeostasis and ultimately improve functional bone regeneration. Previously, we have developed a novel immunomodulatory therapeutic strategy to deplete MDSCs using Janus gold nanoparticles that mimic the structure and function of antibodies. Here, in a preclinical delayed treatment composite injury model of bone and muscle trauma, we investigate the effects of these nanoparticles on circulating MDSCs, systemic immune profiles, and functional bone regeneration. Unexpectedly, treatment with the nanoparticles resulted in depletion of the high side scatter subset of MDSCs and an increase in the low side scatter subset of MDSCs, resulting in an overall increase in total MDSCs. This overall increase correlated with a decrease in bone volume (P = 0.057) at 6 weeks post-treatment and a significant decrease in mechanical strength at 12 weeks post-treatment compared to untreated rats. Furthermore, MDSCs correlated negatively with endpoint bone healing at multiple timepoints. Single cell RNA sequencing of circulating immune cells revealed differing gene expression of the SNAb target molecule S100A8/A9 in MDSC sub-populations, highlighting a potential need for more targeted approaches to MDSC immunomodulatory treatment following trauma. These results provide further insights on the role of systemic immune dysregulation for severe trauma outcomes in the case of non-unions and composite injuries and suggest the need for additional studies on targeted immunomodulatory interventions to enhance healing.

19.
Cytotherapy ; 24(11): 1136-1147, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35882596

RESUMO

BACKGROUND AIMS: Cell therapies have emerged as a potentially transformative therapeutic modality in many chronic and incurable diseases. However, inherent donor and patient variabilities, complex manufacturing processes, lack of well-defined critical quality attributes and unavailability of in-line or at-line process or product analytical technologies result in significant variance in cell product quality and clinical trial outcomes. New approaches for overcoming these challenges are needed to realize the potential of cell therapies. METHODS: Here the authors developed an untargeted two-dimensional gas chromatography mass spectrometry (GC×GC-MS)-based method for non-destructive longitudinal at-line monitoring of cells during manufacturing to discover correlative volatile biomarkers of cell proliferation and end product potency. RESULTS: Specifically, using mesenchymal stromal cell cultures as a model, the authors demonstrated that GC×GC-MS of the culture medium headspace can effectively discriminate between media types and tissue sources. Headspace GC×GC-MS identified specific volatile compounds that showed a strong correlation with cell expansion and product functionality quantified by indoleamine-2,3-dioxygenase and T-cell proliferation/suppression assays. Additionally, the authors discovered increases in specific volatile metabolites when cells were treated with inflammatory stimulation. CONCLUSIONS: This work establishes GC×GC-MS as an at-line process analytical technology for cell manufacturing that could improve culture robustness and may be used to non-destructively monitor culture state and correlate with end product function.


Assuntos
Dioxigenases , Compostos Orgânicos Voláteis , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA