Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Methods Mol Biol ; 2834: 41-63, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39312159

RESUMO

The concept of similarity is an important aspect in various in silico-based prediction approaches. Most of these approaches follow the basic similarity property principle that states that two or more compounds having a high level of similarity are expected to exert similar biological activity or physicochemical property. Although in some cases this principle fails to predict the biological activity or property efficiently for certain compounds, it is applicable to most of the compounds in a given dataset. With the emerging need to efficiently fill data gaps in the regulatory context, Read-Across (RA), a similarity-based approach, has gained popularity, since this is not a statistical approach like QSAR, which requires a sizeable amount of data points to train a meaningful model. The basic idea behind Read-Across is the identification of the close source neighbors, and based on the similarity considerations, predictions are made for the query compound. Although RA is originally an unsupervised prediction method, recent efforts for quantitative Read-Across (qRA) have introduced supervised similarity-based weightage for quantitative predictions. RA is a useful tool in predictive toxicology, but one of its important drawbacks is the lack of interpretability of the features (especially for q-RA) used to generate the Read-Across-based predictions. To bridge this gap, a novel quantitative Read-Across Structure-Activity Relationship (q-RASAR) approach has recently been proposed, which combines the concepts of QSAR and Read-Across, generating statistically reliable and predictive models using similarity and error-based descriptors. The q-RASAR models are simple and interpretable and can be efficiently used to identify not only the essential features but also the nature of the source and query compounds. In this chapter, we have discussed the concepts and various studies on RA, q-RA, and q-RASAR along with some of the tools available from different research groups.


Assuntos
Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Toxicologia/métodos , Algoritmos , Humanos , Biologia Computacional/métodos , Software
2.
Crit Rev Toxicol ; 54(9): 659-684, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39225123

RESUMO

This article aims to provide a comprehensive critical, yet readable, review of general interest to the chemistry community on molecular similarity as applied to chemical informatics and predictive modeling with a special focus on read-across (RA) and read-across structure-activity relationships (RASAR). Molecular similarity-based computational tools, such as quantitative structure-activity relationships (QSARs) and RA, are routinely used to fill the data gaps for a wide range of properties including toxicity endpoints for regulatory purposes. This review will explore the background of RA starting from how structural information has been used through to how other similarity contexts such as physicochemical, absorption, distribution, metabolism, and elimination (ADME) properties, and biological aspects are being characterized. More recent developments of RA's integration with QSAR have resulted in the emergence of novel models such as ToxRead, generalized read-across (GenRA), and quantitative RASAR (q-RASAR). Conventional QSAR techniques have been excluded from this review except where necessary for context.


Assuntos
Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Humanos , Quimioinformática/métodos , Relação Estrutura-Atividade , Animais
3.
J Hazard Mater ; 479: 135725, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243539

RESUMO

In this study, we utilized an innovative quantitative read-across (RA) structure-activity relationship (q-RASAR) approach to predict the bioconcentration factor (BCF) values of a diverse range of organic compounds, based on a dataset of 575 compounds tested using Organisation for Economic Co-operation and Development Test Guideline 305 for bioaccumulation in fish. Initially, we constructed the q-RASAR model using the partial least squares regression method, yielding promising statistical results for the training set (R2 =0.71, Q2LOO=0.68, mean absolute error [MAE]training=0.54). The model was further validated using the test set (Q2F1=0.77, Q2F2=0.75, MAEtest=0.51). Subsequently, we explored the q-RASAR method using other regression-based supervised machine-learning algorithms, demonstrating favourable results for the training and test sets. All models exhibited R2 and Q2F1 values exceeding 0.7, Q2LOO values greater than 0.6, and low MAE values, indicating high model quality and predictive capability for new, unidentified chemical substances. These findings represent the significance of the RASAR method in enhancing predictivity for new unknown chemicals due to the incorporation of similarity functions in the RASAR descriptors, independent of a specific algorithm.


Assuntos
Aprendizado de Máquina , Compostos Orgânicos , Relação Quantitativa Estrutura-Atividade , Compostos Orgânicos/química , Organização para a Cooperação e Desenvolvimento Econômico , Bioacumulação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Animais , Peixes/metabolismo , Algoritmos
4.
Mol Divers ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283569
5.
Sci Total Environ ; 954: 176175, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270868

RESUMO

The excessive use of pesticides (an important group of chemicals) in the agricultural as well as public sectors raises a health concern. Pesticides affect humans and other living organisms via the food chain. Therefore, it is very necessary to calculate the dissipation half-life of pesticides in plants. Experimental prediction of pesticide dissipation half-lives requires complex environmental conditions, high cost, and a long time. Thus, in-silico half-life predictions are suitable and the best alternative. Herein, a total of six PLS (partial least squares) models namely, M1 (overall), M2 (fruit), M3 (plant interior), M4 (leaf), M5 (plant surface), and M6 (whole plant) alongside two MLR (multiple linear regression) models i.e. M7 (fruit surface) and model M8 (straw) were generated using dissipation half-lives (log10(T1/2)) of pesticides in plants and their different parts. Models were constructed in strict accordance with the guidelines outlined by the Organization for Economic Co-operation and Development (OECD) and extensively validated using globally accepted validation metrics (determination coefficient (R2) = 0.610-0.795, leave-one-out (LOO) cross-validated correlation coefficient (Q2LOO) = 0.520-0.660, MAE-FITTED TRAIN (mean absolute error fitted train) = 0.119-0.148, MAE-LOOTRAIN = 0.132-0.177, predictive R2 or Q2F1 = 0.538-0.567, Q2F2 = 0.500-0.565, MAETEST = 0.122-0.232), confirming their accuracy, reliability, predictivity, and robustness. Lipophilicity, the presence of a cyclomatic ring, suphur, aromatic amine fragments, and chlorine atom fragments are responsible (+ve contribution) for high dissipation half-lives of pesticides in plants. In contrast, hydrophilicity, pyrazine fragments, and rotatable bonds reduce (-ve negative contribution) the dissipation half-lives of pesticides in plants. To address the real-world applicability, the models were employed to screen the PPDB (Pesticide Properties Database) database, which revealed the top 10 pesticides with the highest log(T1/2) in the whole plant and respective parts of the plant body. The present work will aid in developing safer and novel pesticides, regulatory risk assessment, various risk assessments for the sustenance of public health, screening of databases, and data-gap filling.

6.
Sci Rep ; 14(1): 20812, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242880

RESUMO

With the exponential progress in the field of cheminformatics, the conventional modeling approaches have so far been to employ supervised and unsupervised machine learning (ML) and deep learning models, utilizing the standard molecular descriptors, which represent the structural, physicochemical, and electronic properties of a particular compound. Deviating from the conventional approach, in this investigation, we have employed the classification Read-Across Structure-Activity Relationship (c-RASAR), which involves the amalgamation of the concepts of classification-based quantitative structure-activity relationship (QSAR) and Read-Across to incorporate Read-Across-derived similarity and error-based descriptors into a statistical and machine learning modeling framework. ML models developed from these RASAR descriptors use similarity-based information from the close source neighbors of a particular query compound. We have employed different classification modeling algorithms on the selected QSAR and RASAR descriptors to develop predictive models for efficient prediction of query compounds' hepatotoxicity. The predictivity of each of these models was evaluated on a large number of test set compounds. The best-performing model was also used to screen a true external data set. The concepts of explainable AI (XAI) coupled with Read-Across were used to interpret the contributions of the RASAR descriptors in the best c-RASAR model and to explain the chemical diversity in the dataset. The application of various unsupervised dimensionality reduction techniques like t-SNE and UMAP and the supervised ARKA framework showed the usefulness of the RASAR descriptors over the selected QSAR descriptors in their ability to group similar compounds, enhancing the modelability of the dataset and efficiently identifying activity cliffs. Furthermore, the activity cliffs were also identified from Read-Across by observing the nature of compounds constituting the nearest neighbors for a particular query compound. On comparing our simple linear c-RASAR model with the previously reported models developed using the same dataset derived from the US FDA Orange Book ( https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm ), it was observed that our model is simple, reproducible, transferable, and highly predictive. The performance of the LDA c-RASAR model on the true external set supersedes that of the previously reported work. Therefore, the present simple LDA c-RASAR model can efficiently be used to predict the hepatotoxicity of query chemicals.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Relação Quantitativa Estrutura-Atividade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Algoritmos , Aprendizado de Máquina , Humanos , Quimioinformática/métodos
8.
Aquat Toxicol ; 273: 106985, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875952

RESUMO

In the modern era, chemicals and their products have been used everywhere like agriculture, healthcare, food, cosmetics, pharmaceuticals, household products, clothing industry, etc. These chemicals find their way to reach the aquatic ecosystem (directly/indirectly) and cause severe chronic and prolonged toxic effects to aquatic species which is also then translated to human beings. Prolonged and chronic toxicity data of many chemicals that are used daily is not available due to high experimentation testing costs, time investment, and the requirement of a large number of animal sacrifices. Thus, in silico approaches (e.g., QSAR (quantitative structure-activity relationship)) are the best alternative for chronic and prolonged toxicity predictions. The present work offers multi-endpoint (five endpoints: chronic_LOEC, prolonged_14D_LC50, prolonged_14D_NOEC, prolonged_21D_LC50, prolonged_21D_NOEC) QSAR models for addressing the prolonged and chronic aquatic toxicity of chemicals toward fish (O. latipes). The statistical results (R2 =0.738-0.869, QLOO2 =0.712-0.831, Q(F1)2 =0.618-0.731) of the developed models show that they were robust, reliable, reproducible, accurate, and predictive. Some of the features that are responsible for prolonged and chronic toxicity of chemicals towards O. latipes are as follows: the presence of substituted benzene, hydrophobicity, unsaturation, electronegativity, the presence of long-chain fragments, the presence of a greater number of atoms at conjugation, and the presence of halogen atoms. On the other hand, hydrophilicity and graph density descriptors retard the aquatic chronic and prolonged toxicity of chemicals toward O. latipes. The PPDB (pesticide properties database) and experimental and investigational classes of drugs from the DrugBank database were also screened using the developed model. Thus, these multi-endpoint models will be helpful for data-gap filling and provide a broad range of applicability. Therefore, this research will aid in the in silico QSAR (quantitative structure-activity relationship) prediction (non-animal testing) of the prolonged and chronic toxicity of untested and new toxic chemicals/drugs/pesticides, design and development of eco-friendly, novel, and safer chemicals, and help to protect the aquatic ecosystem from exposure to toxic and hazardous chemicals.


Assuntos
Ecossistema , Oryzias , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade
9.
Toxicology ; 505: 153824, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705560

RESUMO

We have developed a quantitative safety prediction model for subchronic repeated doses of diverse organic chemicals on rats using the novel quantitative read-across structure-activity relationship (q-RASAR) approach, which uses similarity-based descriptors for predictive model generation. The experimental -Log (NOAEL) values have been used here as a potential indicator of oral subchronic safety on rats as it determines the maximum dose level for which no observed adverse effects of chemicals are found. A total of 186 data points of diverse organic chemicals have been used for the model generation using structural and physicochemical (0D-2D) descriptors. The read-across-derived similarity, error, and concordance measures (RASAR descriptors) have been extracted from the preliminary 0D-2D descriptors. Then, the combined pool of RASAR and the identified 0D-2D descriptors of the training set were employed to develop the final models by using the partial least squares (PLS) algorithm. The developed PLS model was rigorously validated by various internal and external validation metrics as suggested by the Organization for Economic Co-operation and Development (OECD). The final q-RASAR model is proven to be statistically sound, robust and externally predictive (R2 = 0.85, Q2LOO = 0.82 and Q2F1 = 0.94), superseding the internal as well as external predictivity of the corresponding quantitative structure-activity relationship (QSAR) model as well as previously reported subchronic repeated dose toxicity model found in the literature. In a nutshell, the q-RASAR is an effective approach that has the potential to be used as a good alternative way to improve external predictivity, interpretability, and transferability for subchronic oral safety prediction as well as ecotoxicity risk identification.


Assuntos
Nível de Efeito Adverso não Observado , Compostos Orgânicos , Relação Quantitativa Estrutura-Atividade , Animais , Ratos , Compostos Orgânicos/toxicidade , Compostos Orgânicos/química , Administração Oral , Testes de Toxicidade Subcrônica/métodos , Masculino , Relação Dose-Resposta a Droga , Medição de Risco , Feminino
10.
Environ Sci Process Impacts ; 26(6): 991-1007, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38743054

RESUMO

Due to the lack of experimental toxicity data for environmental chemicals, there arises a need to fill data gaps by in silico approaches. One of the most commonly used in silico approaches for toxicity assessment of small datasets is the Quantitative Structure-Activity Relationship (QSAR), which generates predictive models for the efficient prediction of query compounds. However, the reliability of the predictions from QSARs derived from small datasets is often questionable from a statistical point of view. This is due to the presence of a larger number of descriptors as compared to the number of training compounds, which reduces the degree of freedom of the developed model. To reduce the overall prediction error for a particular QSAR model, we have proposed here the computation of the novel Arithmetic Residuals in K-groups Analysis (ARKA) descriptors. We have reduced the number of modeling descriptors in a supervised manner by partitioning them into K classes (K = 2 here) depending on the higher mean normalized values of the descriptors to a particular response class, thus preventing the loss of chemical information. A scatter plot of the data points using the values of two ARKA descriptors (ARKA_2 vs. ARKA_1) can potentially identify activity cliffs, less confident data points, and less modelable data points. We have used here five representative environmentally relevant endpoints (skin sensitization, earthworm toxicity, milk/plasma partitioning, algal toxicity, and rodent carcinogenicity of hazardous chemicals) with graded responses to which the ARKA framework was applied for classification modeling. On comparing the performance of the models generated using conventional QSAR descriptors and the ARKA descriptors, the prediction quality of the models derived from ARKA descriptors was found, based on multiple graded-data validation metrics-derived decision criteria, much better than the models derived from QSAR descriptors signifying the potential of ARKA descriptors in ecotoxicological classification modeling of small data sets. Additionally, this holds true for the Read-Across approach as well, since the Read-Across predictions using ARKA descriptors supersede the predictions generated from QSAR descriptors. For the ease of users, a Java-based expert system has been developed that computes the ARKA descriptors from the input of QSAR descriptors.


Assuntos
Poluentes Ambientais , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Medição de Risco/métodos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/química , Animais , Testes de Toxicidade
11.
J Chem Inf Model ; 64(10): 4298-4309, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38700741

RESUMO

The intricate nature of the blood-brain barrier (BBB) poses a significant challenge in predicting drug permeability, which is crucial for assessing central nervous system (CNS) drug efficacy and safety. This research utilizes an innovative approach, the classification read-across structure-activity relationship (c-RASAR) framework, that leverages machine learning (ML) to enhance the accuracy of BBB permeability predictions. The c-RASAR framework seamlessly integrates principles from both read-across and QSAR methodologies, underscoring the need to consider similarity-related aspects during the development of the c-RASAR model. It is crucial to note that the primary goal of this research is not to introduce yet another model for predicting BBB permeability but rather to showcase the refinement in predicting the BBB permeability of organic compounds through the introduction of a c-RASAR approach. This groundbreaking methodology aims to elevate the accuracy of assessing neuropharmacological implications and streamline the process of drug development. In this study, an ML-based c-RASAR linear discriminant analysis (LDA) model was developed using a dataset of 7807 compounds, encompassing both BBB-permeable and -nonpermeable substances sourced from the B3DB database (freely accessible from https://github.com/theochem/B3DB), for predicting BBB permeability in lead discovery for CNS drugs. The model's predictive capability was then validated using three external sets: one containing 276,518 natural products (NPs) from the LOTUS database (accessible from https://lotus.naturalproducts.net/download) for data gap filling, another comprising 13,002 drug-like/drug compounds from the DrugBank database (available from https://go.drugbank.com/), and a third set of 56 FDA-approved drugs to assess the model's reliability. Further diversifying the predictive arsenal, various other ML-based c-RASAR models were also developed for comparison purposes. The proposed c-RASAR framework emerged as a powerful tool for predicting BBB permeability. This research not only advances the understanding of molecular determinants influencing CNS drug permeability but also provides a versatile computational platform for the rapid assessment of diverse compounds, facilitating informed decision-making in drug development and design.


Assuntos
Barreira Hematoencefálica , Aprendizado de Máquina , Permeabilidade , Relação Quantitativa Estrutura-Atividade , Barreira Hematoencefálica/metabolismo , Humanos , Análise Discriminante
12.
Environ Sci Pollut Res Int ; 31(21): 30415-30426, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607482

RESUMO

Computational techniques, such as quantitative structure-property relationships (QSPRs), can play a significant role in exploring the important chemical features essential for the degree of sorption or sludge/water partition coefficient (Kd) towards sewage sludge of wastewater treatment process to evaluate the environmental consequence and risk of pharmaceuticals. The current research work aims to construct a predictive QSPR model for the sorption of 148 diverse active pharmaceutical ingredients (APIs) in sewage sludge during wastewater treatment. For the development of the model, we employed easily computable 2D descriptors as independent variables. The model has been developed following the Organization for Economic Cooperation and Development's (OECD) guidelines. It has undergone internal and external validation using a variety of methodologies, as well as been tested for its applicability domain. A measure of hydrophobicity, i.e., MLOGP2, showed the most promising contribution in modeling the sorption coefficient of APIs. Among other parameters, the number of tertiary aromatic amines, the presence of electronegative atoms like N, O, and Cl, the size of a molecule, the number of aromatic hydroxyl groups, the presence of substituted aromatic nitrogen atoms and alkyl-substituted tertiary carbon atoms were also found to be influential for the regulation of solid water partition coefficient of APIs during the wastewater treatment process. The statistical validity tests performed on the developed partial least squares (PLS) model showed that it is statistically evident, robust, and predictive (R2Train = 0.750, Q2LOO = 0.683, Q2F1 = 0.655, Q2F2 (or R2Test) = 0.651). In addition, the predictivity of the constructed model was further inspected by using the "prediction reliability indicator" tool for 14 external APIs.


Assuntos
Relação Quantitativa Estrutura-Atividade , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Esgotos/química , Águas Residuárias/química , Preparações Farmacêuticas/química , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos
13.
Environ Sci Process Impacts ; 26(5): 870-881, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652036

RESUMO

Direct or indirect consumption of pesticides and their related products by humans and other living organisms without safe dosing may pose a health risk. The risk may arise after a short/long time which depends on the nature and amount of chemicals consumed. Therefore, the maximum acceptable daily intake of chemicals must be calculated to prevent these risks. In the present work, regression-based quantitative structure-activity relationship (QSAR) models were developed using 39 pesticides with maximum acceptable daily intake (MADI) for humans as the endpoint. From the statistical results (R2 = 0.674-0.712, QLOO2 = 0.553-0.580, Q(F1)2 = 0.544-0.611, and Q(F2)2 = 0.531-0.599), it can be inferred that the developed models were robust, reliable, reproducible, accurate, and predictive. Intelligent Consensus Prediction (ICP) was employed to improve the external predictivity (Q(F1)2 =0.579-0.657 and Q(F2)2 = 0.563-0.647) of the models. Some of the chemical markers responsible for toxicity enhancement are the presence of unsaturated bonds, lipophilicity, presence of C< (double bond-single bond-single bonded carbon), and the presence of sulphur and phosphate bonds at the topological distances 1 and 6, while the presence of hydrophilic groups and short chain fragments reduces the toxicity. The Pesticide Properties Database (PPDB) (1694 pesticides) was also screened with the developed models. Hence, this research work will be helpful for the toxicity assessment of pesticides before their synthesis, the development of eco-friendly and safer pesticides, and data-gap filling reducing the time, cost, and animal experimentation. Thus, this study might hold promise for future potential MADI assessment of pesticides and provide a meaningful contribution to the field of risk assessment.


Assuntos
Praguicidas , Relação Quantitativa Estrutura-Atividade , Praguicidas/análise , Praguicidas/toxicidade , Humanos , Medição de Risco/métodos , Poluentes Ambientais/análise
14.
Beilstein J Nanotechnol ; 15: 297-309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505811

RESUMO

A comprehensive knowledge of the physical and chemical properties of nanomaterials (NMs) is necessary to design them effectively for regulated use. Although NMs are utilized in therapeutics, their cytotoxicity has attracted great attention. Nanoscale quantitative structure-property relationship (nano-QSPR) models can help in understanding the relationship between NMs and the biological environment and provide new ways for modeling the structural properties and bio-toxic effects of NMs. The goal of the study is to construct fully validated property-based models to extract relevant features for estimating and influencing the zeta potential and obtaining the toxicity profile regarding cell damage in the treatment of cancer cells. To achieve this, QSPR modeling was first performed with 18 metal oxide (MeOx) NMs to measure their materials properties using periodic table-based descriptors. The features obtained were later applied for zeta potential calculation (imputation for sparse data) for MeOx NMs that lack such information. To further clarify the influence of the zeta potential on cell damage, a QSPR model was developed with 132 MeOx NMs to understand the possible mechanisms of cell damage. The results showed that zeta potential, along with seven other descriptors, had the potential to influence oxidative damage through free radical accumulation, which could lead to changes in the survival rate of cancerous cells. The developed QSPR and quantitative structure-activity relationship models also give hints regarding safer design and toxicity assessment of MeOx NMs.

15.
Adv Protein Chem Struct Biol ; 139: 405-467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38448142

RESUMO

This study presents a strategy for extracting significant gene complexes and then provides prospective therapeutics for AD. In this research, a total of 7905 reports published from 1981 to 2022 were retrieved. Following a review of all those articles, only the genetic association studies on AD were considered. Finally, there is a list of 453 Alzheimer-related genes in our dataset for network analysis. To this end, an experimentally derived protein-protein interaction (PPI) network from the String database was utilized to extract four meaningful gene complexes functionally interconnected using Cytoscape v3.9.1 software. The acquired gene complexes were subjected to an enrichment analysis using the ClueGO v2.5.9 tool to emphasize the most significant biological processes and pathways. Afterward, extracted gene complexes were used to extract the drugs related to AD from DGI v3.0 database and introduce some new drugs which may be helpful for this disease. Finally, a comprehensive network that included every gene connected to each gene complex group as well as the drug targets for each gene has been shown. Moreover, molecular docking studies have been performed with the selected compounds to identify the interaction pattern with the respective targets. Finally, we proposed a list of 62 compounds as multi-targeted directed drug-like compounds with a degree value between 2 and 5 and 30 compounds as target-specific drug-like compounds, which have not been proclaimed as AD-related drugs in prior scientific and medical investigations. Then, new drugs were suggested that can be experimentally examined for future work. In addition to this, four bipartite networks representing each group's genes and target miRNAs were established to introduce target miRNAs by using the miRWalk v3 server.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Mapas de Interação de Proteínas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Simulação de Acoplamento Molecular , Bases de Dados Factuais , MicroRNAs/genética
16.
Regul Toxicol Pharmacol ; 148: 105572, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325631

RESUMO

We have modeled here chronic Daphnia toxicity taking pNOEC (negative logarithm of no observed effect concentration in mM) and pEC50 (negative logarithm of half-maximal effective concentration in mM) as endpoints using QSAR and chemical read-across approaches. The QSAR models were developed by strictly obeying the OECD guidelines and were found to be reliable, predictive, accurate, and robust. From the selected features in the developed models, we have found that an increase in lipophilicity and saturation, the presence of electrophilic or electronegative or heavy atoms, the presence of sulphur, amine, and their related functionality, an increase in mean atomic polarizability, and higher number of (thio-) carbamates (aromatic) groups are responsible for chronic toxicity. Therefore, this information might be useful for the development of environmentally friendly and safer chemicals and data-gap filling as well as reducing the use of identified toxic chemicals which have chronic toxic effects on aquatic ecosystems. Approved classes of drugs from DrugBank databases and diverse groups of chemicals from the Chemical and Product Categories (CPDat) database were also assessed through the developed models.


Assuntos
Daphnia magna , Poluentes Químicos da Água , Animais , Relação Quantitativa Estrutura-Atividade , Ecossistema , Daphnia , Poluentes Químicos da Água/toxicidade
17.
Mol Inform ; 43(4): e202300210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374528

RESUMO

The application of various in-silico-based approaches for the prediction of various properties of materials has been an effective alternative to experimental methods. Recently, the concepts of Quantitative structure-property relationship (QSPR) and read-across (RA) methods were merged to develop a new emerging chemoinformatic tool: read-across structure-property relationship (RASPR). The RASPR method can be applicable to both large and small datasets as it uses various similarity and error-based measures. It has also been observed that RASPR models tend to have an increased external predictivity compared to the corresponding QSPR models. In this study, we have modeled the power conversion efficiency (PCE) of organic dyes used in dye-sensitized solar cells (DSSCs) by using the quantitative RASPR (q-RASPR) method. We have used relatively larger classes of organic dyes-Phenothiazines (n=207), Porphyrins (n=281), and Triphenylamines (n=229) for the modelling purpose. We have divided each of the datasets into training and test sets in 3 different combinations, and with the training sets we have developed three different QSPR models with structural and physicochemical descriptors and validated them with the corresponding test sets. These corresponding modeled descriptors were used to calculate the RASPR descriptors using a Java-based tool RASAR Descriptor Calculator v2.0 (https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home), and then data fusion was performed by pooling the previously selected structural and physicochemical descriptors with the calculated RASPR descriptors. Further feature selection algorithm was employed to develop the final RASPR PLS models. Here, we also developed different machine learning (ML) models with the descriptors selected in the QSPR PLS and RASPR PLS models, and it was found that models with RASPR descriptors superseded in external predictivity the models with only structural and physicochemical descriptors: RMSEP reduced for phenothiazines from 1.16-1.25 to 1.07-1.18, for porphyrins from 1.60-1.79 to 1.45-1.53, for triphenylamines from 1.27-1.54 to 1.20-1.47.

18.
Environ Sci Process Impacts ; 26(1): 105-118, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38073518

RESUMO

All sorts of chemicals get degraded under various environmental stresses, and the degradates coexist with the parent compounds as mixtures in the environment. Antibiotics emerge as an additional concern due to the bioactive nature of both the parent compound and degradation products and their combined exposure to the environment. Therefore, environmental risk assessment of antibiotics and their degradation products is very much necessary. In this direction, we made use of in silico new approach methodologies (NAMs) and machine-learning algorithms. In this study, we have developed a robust and predictive mixture-quantitative structure-activity relationship (QSAR) model with promising quality and predictability (internal: MAETrain = 0.085, QLOO2 = 0.849, external: MAETest = 0.090, and QF12 = 0.859) for predicting the toxicity of the mixtures of a class of antibiotics and their degradation products. To obtain the predictive model, toxicity data of 78 binary fluoroquinolone mixtures in E. coli (endpoint: log 1/IC50 in molar) have been utilized. We have used only 0D-2D descriptors to efficiently encode the structural features of mixture components without any additional complexities. The optimization of the class of mixture descriptors has been performed in this study by using three different mixing rules (linear combination of molecular contributions, the squared molecular contributions, and the norm of molecular contributions). Different machine-learning approaches namely, random forest (RF), ada boost, gradient boost (GB), extreme gradient boost (XGB), support vector machine (SVM), linear support vector machine (LSVM), and ridge regression (RR) have been employed here apart from the conventional partial least squares (PLS) regression to optimize the modeling approach. A rigorous validation protocol has been used for assessing the goodness-of-fit, robustness, and external predictability of the models. Finally, the toxicity of possible untested mixtures of different photodegradation products of fluoroquinolones has been predicted using the best model reported in this study.


Assuntos
Fluoroquinolonas , Relação Quantitativa Estrutura-Atividade , Fluoroquinolonas/química , Escherichia coli , Antibacterianos/química , Aprendizado de Máquina
19.
J Biomol Struct Dyn ; : 1-19, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109131

RESUMO

De-regulation of oncogenic myelocytomatosis (c-Myc or Myc) transcription factor is one of the most common molecular anomalies encountered in human cancers, and it is typically linked to many aggressive malignancies including breast, lung, cervix, colon glioblastomas, and other haematological organs. The Myc belongs to the basic helix-loop-helix zipper protein family (bHLH-ZIP), and its dimerization with another principal interactor protein partner Myc-associated factor X (Max) is essentially required for cellular transformation, cell growth and proliferation, and transcriptional activation. Intermolecular interactions have been evaluated between hetero-dimer Myc-Max protein, which identified protein-protein interaction (PPI) specific modulators using highly précised molecular docking study followed by long-range interaction stability analyzed through molecular dynamic (MD) simulation. Moreover, ADME profile analyses have been estimated for screened hit compounds. MM-GBSA-based binding free energy (ΔG) estimations have been performed for all screened hit compounds obtained from multi-step molecular docking-based virtual screening technique. According to the employed various rigorous multi-chemometric techniques, four identified inhibitors/modulators appear to have a considerable number of intermolecular contacts with hotspot residues in the hetero-dimer interface region of the Myc-Max PPI complex. However, identified hit compounds might need further structural optimization or extensive biophysical analyses for better understanding of the molecular mechanism for exhibiting the Myc-Max PPI interface binding stability.Communicated by Ramaswamy H. Sarma.

20.
BMJ Case Rep ; 16(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977836

RESUMO

Morel-Lavallée lesions (MLLs) result from high-energy trauma causing separation of subcutaneous tissue from the underlying tissue, most commonly in the gluteal region or thigh.We report the case of a woman in her 40s with a fluctuant collection of the cervico-thoracic region following trauma. Further imaging identified an MLL. An orthoplastic approach resulted in non-operative management with a spinal brace. Three months from initial injury, the lesion completely resolved. She was symptom free at final follow-up and discharged.We present the only recorded case of MLL developing in the cervico-thoracic region. Management posed difficultly as no literature currently exists. We demonstrated conservative management for cervico-thoracic MLL can be effective.We have described the first documented case of cervico-thoracic MLL. MLL is not exclusive to pelvic injuries and can develop in the cervico-thoracic region. We have shown conservative management is a viable treatment of atypical MLL.


Assuntos
Avulsões Cutâneas , Lesões dos Tecidos Moles , Feminino , Humanos , Lesões dos Tecidos Moles/diagnóstico , Avulsões Cutâneas/terapia , Avulsões Cutâneas/patologia , Coxa da Perna/patologia , Dorso/patologia , Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA