Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Manage ; 73(1): 177-198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945899

RESUMO

India is a global hotspot for irrigation-induced groundwater withdrawal, leading to widespread lowering of water levels, in turn resulting in disproportionate access to irrigation supplies among farming communities. Efforts to mitigate the situation, however, have fallen short, largely due to technocentric vision (e.g. microirrigation adoption) of the regulatory authorities (RAs), which does little to integrate the vast groundwater-dependent socioecologies with the decision making system. In view of that, we invite the RAs to deliberate upon a cap-and-trade mechanism that proposes to mobilize the farmers at every aspect of planning and execution, while to tackling multiple challenges simultaneously: (a) restrict groundwater pumping to a pre-defined safe level (cap), (b) creating a shared space/quotas for all to pump (allocation); and (c) making provisions for trade of allocations. The latter further augments farmers' access to groundwater (and irrigation). Using a systematic bibliometric analysis of relevant world literature and contextual appraisal of groundwater-irrigation landscape in India, we develop a conceptual framework of cap-and-trade in three parts. In the first Pre-implementation stage, we emphasize a reality check study to assess ground conditions, if favorable for a cap-and-trade approach (existing social, economic, institutional circumstances). Next, in the Implementation stage, (1) we recommend an integrated hydrogeological-hydrometeorological modeling to determine flexible capping arrangements, with the possibility of delineating certain priority regions (coastal ecosystems); (2) for allocations, a reasonable fraction of the cap over a defined period; we envision a thoroughly participatory arrangement, centering on four action areas: identifying, informing, consulting, and involving the farmers, alongside all stakeholders engaged in the groundwater-irrigation decision making; (3) for trade, we urge the RAs to create win-win situations for both the sellers and buyers; develop the transaction protocols on certain foundational principles (e.g. simplicity, transparency and consistency); strengthening of local institutions, and development of targeted financial support schemes. We consider the third part of the narrative, Post-implementation stage, as a real game changer, comprising of a monitoring, auditing (performance benchmarking) component coupled with multitiered outreach-mentoring drives that demonstrate to the farmers the benefits of becoming part of the cap-and-trade program. Overall, a main motivation to present this research is to shatter the age-old socio-cognitive beliefs/taboos around groundwater pumping (My land, My Water), breaking the hegemony of the water sellers (rich/wealthy large landholder clans), to potentially, create a social norm whereby the farmers realize the value of restricting groundwater pumping and sharing for mutual prosperity.


Assuntos
Ecossistema , Água Subterrânea , Água Subterrânea/análise , Abastecimento de Água , Agricultura , Água/análise , Índia
2.
Environ Dev Sustain ; : 1-39, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37363020

RESUMO

Surging incidents of air quality-related public health hazards, and environmental degradation, have prompted the global authorities to seek newer avenues of air quality monitoring, especially in developing economies, where the situation appears most alarming besides difficulties around 'adequate' deployment of air quality sensors. In the present narrative, we adopt a systematic review methodology (PRISMA, Preferred Reporting Items for Systematic reviews and Meta-Analyses) around recent global literature (2002-2022), around moss-based passive biomonitoring approaches which might offer the regulatory authorities a complementary means to fill 'gaps' in existing air quality records. Following the 4-phased search procedure under PRISMA, total of 123 documents were selected for review. A wealth of research demonstrates how passive biomonitoring, with strategic use of mosses, could become an invaluable regulatory (and research) tool to monitor atmospheric deposition patterns and help identifying the main drivers of air quality changes (e.g., anthropogenic and/or natural). Besides individual studies, we briefly reflect on the European Moss Survey, underway since 1990, which aptly showcases mosses as 'naturally occurring' sensors of ambient air quality for a slew of metals (heavy and trace) and persistent organic pollutants, and help assessing spatio-temporal changes therein. To that end, we urge the global research community to conduct targeted research around various pollutant uptake mechanisms by mosses (e.g., species-specific interactions, environmental conditions, land management practices). Of late, mosses have found various environmental applications as well, such as in epidemiological investigations, identification of pollutant sources and transport mechanisms, assessment of air quality in diverse and complex urban ecosystems, and even detecting short-term changes in ambient air quality (e.g., COVID-19 Lockdown), each being critical for the authorities to develop informed and strategic regulatory measures. To that end, we review current literature and highlight to the regulatory authorities how to extend moss-based observations, by integrating them with a wide range of ecological indicators to assess regional environmental vulnerability/risk due to degrading air quality. Overall, an underlying motive behind this narrative was to broaden the current regulatory outlook and purview, to bolster and diversify existing air quality monitoring initiatives, by coupling the moss-based outputs with the traditional, sensor-based datasets, and attain improved spatial representation. However, we also make a strong case of conducting more targeted research to fill in the 'gaps' in our current understanding of moss-based passive biomonitoring details, with increased case studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s10668-023-03043-0.

3.
Microbiologyopen ; 9(12): e1136, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33166081

RESUMO

Recent studies on recombinant adeno-associated viral (rAAV) vector production demonstrated the generation of infectious viral particles in Saccharomyces cerevisiae. Proof-of-concept results showed low vector yields that correlated with low AAV DNA encapsidation rates. In an attempt to understand the host cell response to rAAV production, we profiled proteomic changes throughout the fermentation process by mass spectrometry. By comparing an rAAV-producing yeast strain with a respective non-producer control, we identified a subset of yeast host proteins with significantly different expression patterns during the rAAV induction period. Gene ontology enrichment and network interaction analyses identified changes in expression patterns associated mainly with protein folding, as well as amino acid metabolism, gluconeogenesis, and stress response. Specific fold change patterns of heat shock proteins and other stress protein markers suggested the occurrence of a cytosolic unfolded protein response during rAAV protein expression. Also, a correlative increase in proteins involved in response to oxidative stress suggested cellular activities to ameliorate the effects of reactive oxygen species or other oxidants. We tested the functional relevance of the identified host proteins by overexpressing selected protein leads using low- and high-copy number plasmids. Increased vector yields up to threefold were observed in clones where proteins SSA1, SSE1, SSE2, CCP1, GTT1, and RVB2 were overexpressed. Recombinant expression of SSA1 and YDJ insect homologues (HSP40 and HSC70, respectively) in Sf9 cells led to a volumetric vector yield increase of 50% relative to control, which validated the importance of chaperone proteins in rAAV-producing systems. Overall, these results highlight the utility of proteomic-based tools for the understanding and optimization of rAAV-producing recombinant strains.


Assuntos
Dependovirus/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virologia , Proteínas Virais/biossíntese , Animais , Linhagem Celular , Dependovirus/genética , Dependovirus/metabolismo , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Espectrometria de Massas , Estresse Oxidativo/genética , Plasmídeos/genética , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Sf9 , Spodoptera , Resposta a Proteínas não Dobradas/genética , Proteínas Virais/genética
4.
PLoS One ; 15(4): e0226180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32302305

RESUMO

Heavy metal accumulation in edible plants grown in contaminated soils poses a major environmental risk to humans and grazing animals. This study focused on the concentration and speciation of Zn in different edible plants grown in soils contaminated with smelter wastes (Spelter, WV, USA) containing high levels of the metals Zn, Cu, Pb, Cd. Their accumulation was examined in different parts (roots, stem, and leaves) of plants and as a function of growth stage (dry seed, sprouting seed, cotyledon, and leaves) in the root vegetables radish, the leafy vegetable spinach and the legume clover. Although the accumulation of metals varied significantly with plant species, the average metal concentrations were [Zn] > [Pb] > [Cu] > [Cd]. Metal uptake studies were complemented with bulk and micro X-ray absorption spectroscopy (XAS) at Zn K-edge and micro X-ray fluorescence (µXRF) measurements to evaluate the speciation and distribution of Zn in these plant species. Dynamic interplay between the histidine and malate complexation of Zn was observed in all plant species. XRF mapping of spinach leaves at micron spatial resolution demonstrated the accumulation of Zn in vacuoles and leaf tips. Radish root showed accumulation of Zn in root hairs, likely as ZnS nanoparticles. At locations of high Zn concentration in spinach leaves, µXANES suggests Zn complexation with histidine, as opposed to malate in the bulk leaf. These findings shed new light on the dynamic nature of Zn speciation in plants.


Assuntos
Plantas Comestíveis/metabolismo , Poluentes do Solo/análise , Verduras/metabolismo , Zinco/análise , Monitoramento Ambiental , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Plantas Comestíveis/química , Raphanus/química , Raphanus/metabolismo , Sementes/química , Sementes/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Spinacia oleracea/química , Spinacia oleracea/metabolismo , Trifolium/química , Trifolium/metabolismo , Verduras/química , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA