Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18051, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872297

RESUMO

A novel Chitosan/Indium sulfide (CS/In2S3) nanocomposite was created by co-precipitating Chitosan and InCl3 in solution, resulting in In2S3 agglomeration on the Chitosan matrix with a remarkable pore diameter of 170.384 Å, and characterized it for the physical and chemical properties. Under optimal conditions (pH = 7, time = 60 min, catalyst dosage = 0.24 g L-1, and dye concentration = 100 mg L-1), the synthesized nanocomposite demonstrated remarkable adsorption capabilities for Victoria Blue (VB), attaining a removal efficiency of 90.81%. The Sips adsorption isotherm best matched the adsorption process, which followed pseudo-second-order kinetics. With a rate constant of 6.357 × 10-3 g mg-1 min-1, the highest adsorption capacity (qm) was found to be 683.34 mg g-1. Statistical physics modeling (SPM) of the adsorption process revealed multi-interaction and multi-molecular adsorption of VB on the CS/In2S3 surface. The nanocomposite demonstrated improved stability and recyclability, indicating the possibility for low-cost, reusable wastewater dye removal adsorbents. These results have the potential to have practical applications in environmental remediation.

2.
Chemosphere ; 331: 138743, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37105310

RESUMO

Low-cost and reliable wastewater treatment is a relevant issue worldwide to reduce the concentration of environmental pollutants. Industrial effluents containing dyes, heavy metals, and other inorganic and organic compounds can pollute water resources; therefore, novel technologies are required to mitigate and control their release into the environment. Adsorption is one of the simplest methods for treating contaminated water in which a wide spectrum of adsorbents can be used to remove emerging compounds. Hydrogels are interesting materials with high adsorption capacities that can be synthesized via green routes. These adsorbents are promising for large-scale industrial wastewater treatment applications; however, gaps still exist in achieving sustainable commercial implementation. This review focuses on the discussion and analysis of preparation, characterization, and adsorption properties of hydrogels for water purification. The advantages of these polymeric materials for water treatment were analyzed, including their performance in the removal of different organic and inorganic contaminants. Recent advances in the functionalization of hydrogels and the synthesis of novel composites have also been described. The adsorption capacities of hydrogel-based adsorbents are higher than 500 mg/g for different organic and inorganic pollutants, and can reach values of up to >2000 mg/g for organic compounds, significantly outperforming other materials reported for water cleaning. The main interactions involved in the adsorption of water pollutants using hydrogel-based adsorbents were described and explained to allow the interpretation of their removal mechanisms. The current challenges in the implementation of hydrogels for water purification in real-life operations are also highlighted. This review provides an updated picture of hydrogels as interesting materials to address water depollution worldwide.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Hidrogéis , Águas Residuárias , Poluentes Químicos da Água/análise , Metais Pesados/análise , Polímeros , Poluentes Ambientais/análise , Purificação da Água/métodos , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA