Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39325958

RESUMO

Ammonia has emerged as a promising fuel for solid oxide fuel cells (SOFCs) owing to its high energy density, high hydrogen content, and carbon-free nature. Herein, the electrocatalytic potential of a novel Ni-doped SFM double-perovskite (Sr1.9Fe0.4Ni0.1Mo0.5O6-δ) is studied, for the first time, as an alternative anode material for symmetrical direct-ammonia SOFCs. Scanning and transmission electron microscopy characterization has revealed the exsolution of Ni-Fe nanoparticles (NPs) from the parent Sr2Fe1.5Mo0.5O6 under anode conditions, and X-ray diffraction has identified the FeNi3 phase after exposure to ammonia at 800 °C. The active-exsolved NPs contribute to achieving a maximal ammonia conversion rate of 97.9% within the cell's operating temperatures (550-800 °C). Utilizing 3D-printed symmetrical cells with SFNM-GDC electrodes, the study demonstrates comparable polarization resistances and peak power densities of 430 and 416 mW cm-2 for H2 and NH3 fuels, respectively, with long-term stability and a negligible voltage loss of 0.48% per 100 h during ammonia-fed extended galvanostatic operation. Finally, the ammonia consumption mechanism is elucidated as a multistep process involving ammonia decomposition, followed by hydrogen oxidation. This study provides a promising avenue for improving the performance and stability of ammonia-based SOFCs for potential applications in clean energy conversion technologies.

2.
Materials (Basel) ; 17(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39063730

RESUMO

Anodization is a method to fabricate a tunable nanoporosity and thickness of alumina coating. This research is devoted to large-area hard anodization (HA), ultrahard anodization (UHA), and transitional modes. The phenomenon and challenges of UHA and the transition from HA are studied on large-area samples using linear-sweep voltammetry. The findings indicate that a uniform large-area thick coating can be achieved by utilizing pre-UHA modes. The study's results indicate that UHA leads only to coatings with non-uniform thickness in large-area anodization. The peculiarities of pre-UHA are studied using different temperatures (0, 5, 10, and 15 °C) and processing times (1, 2, 4, 6, and 12 h) in a 0.3 M oxalic acid electrolyte. The current study shows the possibility for the fast growth of thick nanoporous alumina up to 235 ± 4 µm for only 12 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA