Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Immunol ; 8(83): eade2335, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235682

RESUMO

The ability of most patients with selective immunoglobulin A (IgA) deficiency (SIgAD) to remain apparently healthy has been a persistent clinical conundrum. Compensatory mechanisms, including IgM, have been proposed, yet it remains unclear how secretory IgA and IgM work together in the mucosal system and, on a larger scale, whether the systemic and mucosal anti-commensal responses are redundant or have unique features. To address this gap in knowledge, we developed an integrated host-commensal approach combining microbial flow cytometry and metagenomic sequencing (mFLOW-Seq) to comprehensively define which microbes induce mucosal and systemic antibodies. We coupled this approach with high-dimensional immune profiling to study a cohort of pediatric patients with SIgAD and household control siblings. We found that mucosal and systemic antibody networks cooperate to maintain homeostasis by targeting a common subset of commensal microbes. In IgA-deficiency, we find increased translocation of specific bacterial taxa associated with elevated levels of systemic IgG targeting fecal microbiota. Associated features of immune system dysregulation in IgA-deficient mice and humans included elevated levels of inflammatory cytokines, enhanced follicular CD4 T helper cell frequency and activation, and an altered CD8 T cell activation state. Although SIgAD is clinically defined by the absence of serum IgA, the symptomatology and immune dysregulation were concentrated in the SIgAD participants who were also fecal IgA deficient. These findings reveal that mucosal IgA deficiency leads to aberrant systemic exposures and immune responses to commensal microbes, which increase the likelihood of humoral and cellular immune dysregulation and symptomatic disease in patients with IgA deficiency.


Assuntos
Deficiência de IgA , Humanos , Criança , Camundongos , Animais , Imunoglobulina A Secretora , Imunoglobulina M , Homeostase
2.
Blood ; 139(14): 2198-2211, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34864916

RESUMO

KMT2A-rearranged (KMT2A-r) infant acute lymphoblastic leukemia (ALL) is a devastating malignancy with a dismal outcome, and younger age at diagnosis is associated with increased risk of relapse. To discover age-specific differences and critical drivers that mediate poor outcome in KMT2A-r ALL, we subjected KMT2A-r leukemias and normal hematopoietic cells from patients of different ages to single-cell multiomics analyses. We uncovered the following critical new insights: leukemia cells from patients <6 months have significantly increased lineage plasticity. Steroid response pathways are downregulated in the most immature blasts from younger patients. We identify a hematopoietic stem and progenitor-like (HSPC-like) population in the blood of younger patients that contains leukemic blasts and form an immunosuppressive signaling circuit with cytotoxic lymphocytes. These observations offer a compelling explanation for the ability of leukemias in young patients to evade chemotherapy and immune-mediated control. Our analysis also revealed preexisting lymphomyeloid primed progenitors and myeloid blasts at initial diagnosis of B-ALL. Tracking of leukemic clones in 2 patients whose leukemia underwent a lineage switch documented the evolution of such clones into frank acute myeloid leukemia (AML). These findings provide critical insights into KMT2A-r ALL and have clinical implications for molecularly targeted and immunotherapy approaches. Beyond infant ALL, our study demonstrates the power of single-cell multiomics to detect tumor intrinsic and extrinsic factors affecting rare but critical subpopulations within a malignant population that ultimately determines patient outcome.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/uso terapêutico , Rearranjo Gênico , Humanos , Imunoterapia , Lactente , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
3.
PLoS Negl Trop Dis ; 13(8): e0007654, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31369554

RESUMO

The 2013-2016 Ebola virus outbreak in West Africa was the largest and deadliest outbreak to date. Here we conducted a serological study to examine the antibody levels in survivors and the seroconversion in close contacts who took care of Ebola-infected individuals, but did not develop symptoms of Ebola virus disease. In March 2017, we collected blood samples from 481 individuals in Makeni, Sierra Leone: 214 survivors and 267 close contacts. Using commercial, quantitative ELISAs, we tested the plasma for IgG-specific antibodies against three major viral antigens: GP, the only viral glycoprotein expressed on the virus surface; NP, the most abundant viral protein; and VP40, a major structural protein of Zaire ebolavirus. We also determined neutralizing antibody titers. In the cohort of Ebola survivors, 97.7% of samples (209/214) had measurable antibody levels against GP, NP, and/or VP40. Of these positive samples, all but one had measurable neutralizing antibody titers against Ebola virus. For the close contacts, up to 12.7% (34/267) may have experienced a subclinical virus infection as indicated by detectable antibodies against GP. Further investigation is warranted to determine whether these close contacts truly experienced subclinical infections and whether these asymptomatic infections played a role in the dynamics of transmission.


Assuntos
Anticorpos Antivirais/sangue , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Sobreviventes , Adulto , Anticorpos Neutralizantes/sangue , Estudos Transversais , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Plasma/imunologia , Serra Leoa , Adulto Jovem
4.
Immunity ; 51(1): 131-140.e5, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315031

RESUMO

Macrophages play an important role in structural cardiac remodeling and the transition to heart failure following myocardial infarction (MI). Previous research has focused on the impact of blood-derived monocytes on cardiac repair. Here we examined the contribution of resident cavity macrophages located in the pericardial space adjacent to the site of injury. We found that disruption of the pericardial cavity accelerated maladaptive post-MI cardiac remodeling. Gata6+ macrophages in mouse pericardial fluid contributed to the reparative immune response. Following experimental MI, these macrophages invaded the epicardium and lost Gata6 expression but continued to perform anti-fibrotic functions. Loss of this specialized macrophage population enhanced interstitial fibrosis after ischemic injury. Gata6+ macrophages were present in human pericardial fluid, supporting the notion that this reparative function is relevant in human disease. Our findings uncover an immune cardioprotective role for the pericardial tissue compartment and argue for the reevaluation of surgical procedures that remove the pericardium.


Assuntos
Fibrose/prevenção & controle , Fator de Transcrição GATA6/metabolismo , Coração/fisiologia , Macrófagos/imunologia , Infarto do Miocárdio/imunologia , Miocárdio/patologia , Pericárdio/imunologia , Animais , Movimento Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA