Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Int J Surg ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38759694

RESUMO

BACKGROUND: Testicular cancer (TC) is currently the most common malignancy in young and middle-aged men. A comprehensive assessment of TC burden is in lack. METHOD: Global incidence, deaths, and disability-adjusted life-years (DALYs) of TC from 1990 to 2019 were obtained. Estimated annual percentage change (EAPC) was calculated to quantify trends in TC changes during the period. Relationships between disease burden and age, sociodemographic index (SDI) levels, human development index (HDI) were further analyzed. RESULTS: Globally, incident cases of TC more than doubled from 1990 to 2019, together with an increasing of global age-standardized incidence rates (ASIR) of TC from 1.9 to 2.8. The age-standardized deaths rates (ASDR) remained stable from 0.31 to 0.28. The similar results were reflected in the disability-adjusted life-years (DALYs). In 2019, the highest ASIR were found in Southern Latin America, Central Europe and Western Europe. Analogously, the highest ASDR were found in Southern Latin America followed by Central Latin America and Central Europe. The burden of incidence increased with SDI, appropriately reached a peak at about 0.78, and then declined. Similarly, the burden of deaths increased with SDI, met a maximum at about 0.7. CONCLUSIONS: From 1990 to 2019, the ASIR of TC has increased significantly, while the ASDR has been relatively stable and slightly decreased. The disease burden of TC is shifting to regions and countries with moderate to high levels of development. TC remains a rapidly growing global health problem, and new changes in TC burden should be considered when formulating new TC control policies.

2.
Am J Sports Med ; 52(7): 1707-1718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702986

RESUMO

BACKGROUND: The tendon-bone interface (TBI) in the rotator cuff has a poor intrinsic capacity for healing, which increases the risk of retear after rotator cuff repair (RCR). However, facilitating regeneration of the TBI still remains a great clinical challenge. Herein, the authors established a novel strategy based on magnetic seeding to enhance the TBI regeneration. HYPOTHESIS: Magnetic seeding bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide (SPIO-BMSCs) into a biphasic scaffold can promote tendon-bone healing after RCR. STUDY DESIGN: Controlled laboratory study. METHODS: BMSCs were labeled with SPIOs. Prussian blue staining, CCK-8 tests, Western blot, and quantitative reverse transcription polymerase chain reaction (PCR) were used to determine the optimal effect concentration of SPIOs on cell bioactivities and abilities. Then SPIO-BMSCs were magnetically seeded into a biphasic scaffold under a magnetic field. The seeding efficacy was assessed by a scanning electron microscope, and the potential mechanism in chondrogenic differentiation after seeding SPIO-BMSCs into the scaffold was evaluated by Western blot and PCR. Furthermore, the effect of SPIO-BMSC/biphasic scaffold on tendon-bone healing after RCR using a rat model was examined using histological analysis, enzyme-linked immunosorbent assay, and biomechanical evaluation. RESULTS: BMSCs labeled with 100 µg/mL SPIO had no effect on cell bioactivities and the ability of chondrogenic differentiation. SPIO-BMSCs were magnetically seeded into a biphasic scaffold, which offered a high seeding efficacy to enhance chondrogenic differentiation of SPIO-BMSCs via the CDR1as/miR-7/FGF2 pathway for TBI formation in vitro. Furthermore, in vivo application of the biphasic scaffold with magnetically seeded SPIO-BMSCs showed their regenerative potential, indicating that they could significantly accelerate and promote TBI healing with superior biomechanical properties after RCR in a rat rotator cuff tear model. CONCLUSION: Magnetically seeding SPIO-BMSCs into a biphasic scaffold enhanced seeding efficacy to promote cell distribution and condensation. This construct enhanced the chondrogenesis process via the CDR1as/miR-7/FGF2 pathway and further promoted tendon-bone healing after RCR in a rat rotator cuff tear model. CLINICAL RELEVANCE: This study provides an alternative strategy for improving TBI healing after RCR.


Assuntos
Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Lesões do Manguito Rotador , Alicerces Teciduais , Cicatrização , Animais , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/terapia , Células-Tronco Mesenquimais/fisiologia , Ratos , Masculino , Manguito Rotador/cirurgia , Transplante de Células-Tronco Mesenquimais , Nanopartículas Magnéticas de Óxido de Ferro , Diferenciação Celular , Condrogênese
3.
Food Funct ; 15(10): 5485-5495, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38690748

RESUMO

Ginsenoside Rk1, one kind of ginsenoside, is a minor ginsenoside found in Panax ginseng and used as traditional Chinese medicine for centuries. It exhibits anti-tumor and anti-aggregation effects. However, little research has been done on its effect on endothelial function. This study investigated whether ginsenoside Rk1 improved endothelial dysfunction in diabetes and the underlying mechanisms in vivo and in vitro. Male C57BL/6 mice were fed with a 12 week high-fat diet (60% kcal % fat), whereas treatment groups were orally administered with ginsenoside Rk1 (10 and 20 mg per kg per day) in the last 4 weeks. Aortas isolated from C57BL/6 mice were induced by high glucose (HG; 30 mM) and co-treated with or without ginsenoside Rk1 (1 and 10 µM) for 48 h ex vivo. Moreover, primary rat aortic endothelial cells (RAECs) were cultured and stimulated by HG (44 mM) to mimic hyperglycemia, with or without the co-treatment of ginsenoside Rk1 (10 µM) for 48 h. Endothelium-dependent relaxations of mouse aortas were damaged with elevated oxidative stress and downregulation of three isoforms of peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-ß/δ, and PPAR-γ, as well as endothelial nitric oxide synthase (eNOS) phosphorylation due to HG or high-fat diet stimulation, which also existed in RAECs. However, after the treatment with ginsenoside Rk1, these impairments were all ameliorated significantly. Moreover, the vaso-protective and anti-oxidative effects of ginsenoside Rk1 were abolished by PPAR antagonists (GSK0660, GW9662 or GW6471). In conclusion, this study reveals that ginsenoside Rk1 ameliorates endothelial dysfunction and suppresses oxidative stress in diabetic vasculature through activating the PPAR/eNOS pathway.


Assuntos
Endotélio Vascular , Ginsenosídeos , Camundongos Endogâmicos C57BL , Receptores Ativados por Proliferador de Peroxissomo , Ginsenosídeos/farmacologia , Animais , Masculino , Camundongos , Ratos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Panax/química , Dieta Hiperlipídica
4.
Org Lett ; 26(15): 3235-3240, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38557113

RESUMO

Catalytic asymmetric 1,2-allylation of aurone-derived azadienes is very difficult to achieve due to the driving force for aromatization and the greater steric hindrance of 1,2-addition compared with 1,4-addition. By taking advantage of the ability of nitrogen ligated metal complexes, we successfully demonstrated the first example of copper-catalyzed 1,2-allylation of azadienes with allylboronates for the highly enantioselective synthesis of homoallylic amines. Meanwhile, the enantioenriched 1,4-addition products could also be obtained through a subsequent 3,3-sigmatropic rearrangement of the 1,2-addition products. Extensive DFT calculations were carried out to elucidate the origins of high regioselectivity (1,2- vs 1,4-) and enantioselectivity.

5.
Nat Commun ; 15(1): 1995, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443404

RESUMO

Cardiac macrophage contributes to the development of cardiac fibrosis, but factors that regulate cardiac macrophages transition and activation during this process remains elusive. Here we show, by single-cell transcriptomics, lineage tracing and parabiosis, that cardiac macrophages from circulating monocytes preferentially commit to macrophage-to-myofibroblast transition (MMT) under angiotensin II (Ang II)-induced hypertension, with accompanying increased expression of the RNA N6-methyladenosine demethylases, ALKBH5. Meanwhile, macrophage-specific knockout of ALKBH5 inhibits Ang II-induced MMT, and subsequently ameliorates cardiac fibrosis and dysfunction. Mechanistically, RNA immunoprecipitation sequencing identifies interlukin-11 (IL-11) mRNA as a target for ALKBH5-mediated m6A demethylation, leading to increased IL-11 mRNA stability and protein levels. By contrast, overexpression of IL11 in circulating macrophages reverses the phenotype in ALKBH5-deficient mice and macrophage. Lastly, targeted delivery of ALKBH5 or IL-11 receptor α (IL11RA1) siRNA to monocytes/macrophages attenuates MMT and cardiac fibrosis under hypertensive stress. Our results thus suggest that the ALKBH5/IL-11/IL11RA1/MMT axis alters cardiac macrophage and contributes to hypertensive cardiac fibrosis and dysfunction in mice, and thereby identify potential targets for cardiac fibrosis therapy in patients.


Assuntos
Adenina , Hipertensão , Interleucina-11 , Animais , Humanos , Camundongos , Adenina/análogos & derivados , Homólogo AlkB 5 da RNA Desmetilase , Angiotensina II , Cardiotônicos , Macrófagos , Miofibroblastos , RNA
6.
World J Clin Oncol ; 15(2): 317-328, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38455137

RESUMO

BACKGROUND: Limonin is one of the most abundant active ingredients of Tetradium ruticarpum. It exerts antitumor effects on several kinds of cancer cells. However, whether limonin exerts antitumor effects on colorectal cancer (CRC) cells and cancer stem-like cells (CSCs), a subpopulation responsible for a poor prognosis, is unclear. AIM: To evaluate the effects of limonin on CSCs derived from CRC cells. METHODS: CSCs were collected by culturing CRC cells in serum-free medium. The cytotoxicity of limonin against CSCs and parental cells (PCs) was determined by cholecystokinin octapeptide-8 assay. The effects of limonin on stemness were detected by measuring stemness hallmarks and sphere formation ability. RESULTS: As expected, limonin exerted inhibitory effects on CRC cell behaviors, including cell proliferation, migration, invasion, colony formation and tumor formation in soft agar. A relatively low concentration of limonin decreased the expression stemness hallmarks, including Nanog and ß-catenin, the proportion of aldehyde dehydrogenase 1-positive CSCs, and the sphere formation rate, indicating that limonin inhibits stemness without presenting cytotoxicity. Additionally, limonin treatment inhibited invasion and tumor formation in soft agar and in nude mice. Moreover, limonin treatment significantly inhibited the phosphorylation of STAT3 at Y705 but not S727 and did not affect total STAT3 expression. Inhibition of Nanog and ß-catenin expression and sphere formation by limonin was obviously reversed by pretreatment with 2 µmol/L colievlin. CONCLUSION: Taken together, these results indicate that limonin is a promising compound that targets CSCs and could be used to combat CRC recurrence and metastasis.

7.
Plant Cell Environ ; 47(5): 1625-1639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38282386

RESUMO

The circadian clock plays multiple functions in the regulation of plant growth, development and response to various abiotic stress. Here, we showed that the core oscillator component late elongated hypocotyl (LHY) was involved in rice response to salt stress. The mutations of OsLHY gene led to reduced salt tolerance in rice. Transcriptomic analyses revealed that the OsLHY gene regulates the expression of genes related to ion homeostasis and the abscisic acid (ABA) signalling pathway, including genes encoded High-affinity K+ transporters (OsHKTs) and the stress-activated protein kinases (OsSAPKs). We demonstrated that OsLHY directly binds the promoters of OsHKT1;1, OsHKT1;4 and OsSAPK9 to regulate their expression. Moreover, the ossapk9 mutants exhibited salt tolerance under salt stress. Taken together, our findings revealed that OsLHY integrates ion homeostasis and the ABA pathway to regulate salt tolerance in rice, providing insights into our understanding of how the circadian clock controls rice response to salt stress.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Hipocótilo/metabolismo , Oryza/fisiologia , Estresse Salino , Homeostase , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo
8.
J Cardiovasc Transl Res ; 17(1): 153-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37713049

RESUMO

Macrophage is the main effector cell during atherosclerosis. We applied single-cell RNA sequencing (scRNA) data to investigate the role of macrophage subsets in atherosclerosis. Monocyte and macrophage clusters were divided into 6 subclusters. Each subcluster's markers were calculated and validated by immunofluorescence. Elevated macrophage subclusters in the WD group were subject to enrichment pathway analysis and exhibited different phenotypes. Pseudotime analysis shows the subclusters originate from monocytes. We cultured bone marrow-derived macrophages with CSF-1 and ox-LDL to simulate an atherosclerotic-like environment and detected the transformation of subclusters. Macrophage-Vegfa and Macrophage-C1qb increased in the WD group. Macrophage-Vegfa acquires the characteristics of phagocytosis and immune response, while Macrophage-C1qb is not involved in lipid metabolism. The two subclusters are both enriched in cell movement and migration pathways. Experimental verification proved Monocyte-Ly6C evolved into Macrophage-Vegfa and Macrophage-C1qb during atherosclerosis progression.


Assuntos
Doenças da Aorta , Aterosclerose , Placa Aterosclerótica , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Aterosclerose/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Aorta/metabolismo , Placa Aterosclerótica/genética
9.
Light Sci Appl ; 12(1): 215, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666825

RESUMO

Considering the multi-functionalization of ligands, it is crucial for ligand molecular design to reveal the landscape of anchoring sites. Here, a typical triphenylphosphine (TPP) ligand was employed to explore its effect on the surface of CsPbI3 perovskite nanocrystals (PNCs). Except for the conventionally considered P-Pb coordination, an P-I supramolecular halogen bonding was also found on the NC surface. The coexistence of the above two types of bonding significantly increased the formation energy of iodine vacancy defects and improved the photoluminescence quantum yield of PNCs up to 93%. Meanwhile, the direct interaction of P and I enhanced the stability of the Pb-I octahedra and dramatically inhibited the migration of I ions. Furthermore, the introduction of additional benzene rings (2-(Diphenylphosphino)-biphenyl (DPB)) increased the delocalized properties of the PNC surface and significantly improved the charge transport of the PNCs. As a result, the DPB passivated CsPbI3 NCs based top-emitting LEDs exhibite a peak external quantum efficiency (EQE) of 22.8%, a maximum luminance of 15, 204 cd m-2, and an extremely low-efficiency roll-off of 2.6% at the current density of 500 mA cm-2.

11.
Eur Heart J ; 44(29): 2730-2742, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377160

RESUMO

AIMS: Excess dietary sodium intake and retention lead to hypertension. Impaired dermal lymphangiogenesis and lymphatic dysfunction-mediated sodium and fluid imbalance are pathological mechanisms. The adenosine A2A receptor (A2AR) is expressed in lymphatic endothelial cells (LECs), while the roles and mechanisms of LEC-A2AR in skin lymphangiogenesis during salt-induced hypertension are not clear. METHODS AND RESULTS: The expression of LEC-A2AR correlated with lymphatic vessel density in both high-salt diet (HSD)-induced hypertensive mice and hypertensive patients. Lymphatic endothelial cell-specific A2AR knockout mice fed HSD exhibited 17 ± 2% increase in blood pressure and 17 ± 3% increase in Na+ content associated with decreased lymphatic density (-19 ± 2%) compared with HSD-WT mice. A2AR activation by agonist CGS21680 increased lymphatic capillary density and decreased blood pressure in HSD-WT mice. Furthermore, this A2AR agonist activated MSK1 directly to promote VEGFR2 activation and endocytosis independently of VEGF as assessed by phosphoprotein profiling and immunoprecipitation assays in LECs. VEGFR2 kinase activity inhibitor fruquintinib or VEGFR2 knockout in LECs but not VEGF-neutralizing antibody bevacizumab suppressed A2AR activation-mediated decrease in blood pressure. Immunostaining revealed phosphorylated VEGFR2 and MSK1 expression in the LECs were positively correlated with skin lymphatic vessel density and A2AR level in hypertensive patients. CONCLUSION: The study highlights a novel A2AR-mediated VEGF-independent activation of VEGFR2 signaling in dermal lymphangiogenesis and sodium balance, which might be a potential therapeutic target in salt-sensitive hypertension.


Assuntos
Hipertensão , Linfangiogênese , Camundongos , Animais , Receptor A2A de Adenosina/metabolismo , Células Endoteliais/metabolismo , Inibidores de Proteínas Quinases , Sódio/metabolismo
12.
Methods Mol Biol ; 2662: 203-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37076683

RESUMO

Brown adipose tissue (BAT) is a specialized fat depot that can dissipate energy through uncoupled respiration and thermogenesis. Various immune cells such as macrophages, eosinophils, type 2 innate lymphoid cells, and T lymphocytes were recently found to have an unexpected involvement in controlling the thermogenic activity of brown adipose tissue. Here, we describe a protocol for isolation and characterization of T cells from brown adipose tissue.


Assuntos
Tecido Adiposo Marrom , Imunidade Inata , Tecido Adiposo Marrom/metabolismo , Linfócitos , Adipócitos Marrons , Linfócitos T , Metabolismo Energético , Termogênese
13.
Sci Adv ; 9(14): eade4110, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018396

RESUMO

The liver plays a protective role in myocardial infarction (MI). However, very little is known about the mechanisms. Here, we identify mineralocorticoid receptor (MR) as a pivotal nexus that conveys communications between the liver and the heart during MI. Hepatocyte MR deficiency and MR antagonist spironolactone both improve cardiac repair after MI through regulation on hepatic fibroblast growth factor 21 (FGF21), illustrating an MR/FGF21 axis that underlies the liver-to-heart protection against MI. In addition, an upstreaming acute interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway transmits the heart-to-liver signal to suppress MR expression after MI. Hepatocyte Il6 receptor deficiency and Stat3 deficiency both aggravate cardiac injury through their regulation on the MR/FGF21 axis. Therefore, we have unveiled an IL-6/STAT3/MR/FGF21 signaling axis that mediates heart-liver cross-talk during MI. Targeting the signaling axis and the cross-talk could provide new strategies to treat MI and heart failure.


Assuntos
Interleucina-6 , Infarto do Miocárdio , Humanos , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Infarto do Miocárdio/metabolismo , Fígado/metabolismo , Receptores de Interleucina-6/metabolismo
14.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292919

RESUMO

Jatrorrhizine (JAT) is one of the major bioactive protoberberine alkaloids found in rhizoma coptidis, which has hypoglycemic and hypolipidemic potential. This study aimed to evaluate the vasoprotective effects of JAT in diabetes and obesity and the underlying mechanism involved. Mouse aortas, carotid arteries and human umbilical cord vein endothelial cells (HUVECs) were treated with risk factors (high glucose or tunicamycin) with and without JAT ex vivo and in vitro. Furthermore, aortas were obtained from mice with chronic treatment: (1) control; (2) diet-induced obese (DIO) mice fed a high-fat diet (45% kcal% fat) for 15 weeks; and (3) DIO mice orally administered JAT at 50 mg/kg/day for the last 5 weeks. High glucose or endoplasmic reticulum (ER) stress inducer tunicamycin impaired acetylcholine-induced endothelium-dependent relaxations (EDRs) in mouse aortas, induced oxidative stress in carotid arteries and HUVECs, downregulated phosphorylations of Akt at Ser473 and eNOS at Ser1177 and enhanced ER stress in mouse aortas and HUVECs, and these impairments were reversed by cotreatment with JAT. JAT increased NO release in high-glucose-treated mouse aortas and HUVECs. In addition, chronic JAT treatment restored endothelial function with EDRs comparable to the control, increased Akt/eNOS phosphorylation, and attenuated ER stress and oxidative stress in aortas from DIO mice. Blood pressure, glucose sensitivity, fatty liver and its morphological change, as well as plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and plasma lipid profile, were also normalized by JAT treatment. Collectively, our data may be the first to reveal the vasoprotective effect of JAT that ameliorates endothelial dysfunction in diabetes and obesity through enhancement of the Akt/eNOS pathway and NO bioavailability, as well as suppression of ER stress and oxidative stress.


Assuntos
Diabetes Mellitus , Medicamentos de Ervas Chinesas , Camundongos , Humanos , Animais , Estresse do Retículo Endoplasmático , Tunicamicina/farmacologia , Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetilcolina/metabolismo , Alanina Transaminase/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Camundongos Endogâmicos C57BL , Diabetes Mellitus/metabolismo , Estresse Oxidativo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Aspartato Aminotransferases/metabolismo , Lipídeos/farmacologia
15.
J Exp Bot ; 73(22): 7273-7284, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073837

RESUMO

High temperature (HT) can affect the accumulation of seed storage materials and cause adverse effects on the yield and quality of rice. DNA methylation plays an important role in plant growth and development. Here, we identified a new demethylase gene OsDML4 and discovered its function in cytosine demethylation to affect endosperm formation. Loss of function of OsDML4 induced chalky endosperm only under HT and dramatically reduced the transcription and accumulation of glutelins and 16 kDa prolamin. The expression of two transcription factor genes RISBZ1 and RPBF was significantly decreased in the osdml4 mutants, which caused adverse effects on the formation of protein bodies (PBs) with greatly decreased PB-II number, and incomplete and abnormally shaped PB-IIs. Whole-genome bisulfite sequencing analysis of seeds at 15 d after pollination revealed much higher global methylation levels of CG, CHG, and CHH contexts in the osdml4 mutants compared with the wild type. Moreover, the RISBZ1 promoter was hypermethylated but the RPBF promoter was almost unchanged under HT. No significant difference was detected between the wild type and osdml4 mutants under normal temperature. Our study demonstrated a novel OsDML4-mediated DNA methylation involved in the formation of chalky endosperm only under HT and provided a new perspective in regulating endosperm development and the accumulation of seed storage proteins in rice.


Assuntos
Oryza , Oryza/genética
16.
Antioxidants (Basel) ; 11(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883829

RESUMO

Oxidative stress in adipose tissue is a crucial pathogenic mechanism of obesity-associated cardiovascular diseases. Chronic low-grade inflammation caused by obesity increases ROS production and dysregulation of adipocytokines. Leonurine (LEO) is an active alkaloid extracted from Herba Leonuri and plays a protective role in the cardiovascular system. The present study tested whether LEO alleviates inflammation and oxidative stress, and improves vascular function in an obese mouse model. Here, we found that obesity leads to inflammation and oxidative stress in epididymal white adipose tissue (EWAT), as well as vascular dysfunction. LEO significantly improved inflammation and oxidative stress both in vivo and in vitro. Obesity-induced vascular dysfunction was also improved by LEO as evidenced by the ameliorated vascular tone and decreased mesenteric artery fibrosis. Using mass spectrometry, we identified YTHDF1 as the direct target of LEO. Taken together, we demonstrated that LEO improves oxidative stress and vascular remodeling induced by obesity and targets YTHDF1, raising the possibility of LEO treating other obesity-related metabolic syndromes.

17.
Circ Res ; 131(2): 133-147, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652349

RESUMO

BACKGROUND: The ADRB3 (ß3-adrenergic receptors), which is predominantly expressed in brown adipose tissue (BAT), can activate BAT and improve metabolic health. Previous studies indicate that the endocrine function of BAT is associated with cardiac homeostasis and diseases. Here, we investigate the role of ADRB3 activation-mediated BAT function in cardiac remodeling. METHODS: BKO (brown adipocyte-specific ADRB3 knockout) and littermate control mice were subjected to Ang II (angiotensin II) for 28 days. Exosomes from ADRB3 antagonist SR59230A (SR-exo) or agonist mirabegron (MR-exo) treated brown adipocytes were intravenously injected to Ang II-infused mice. RESULTS: BKO markedly accelerated cardiac hypertrophy and fibrosis compared with control mice after Ang II infusion. In vitro, ADRB3 KO rather than control brown adipocytes aggravated expression of fibrotic genes in cardiac fibroblasts, and this difference was not detected after exosome inhibitor treatment. Consistently, BKO brown adipocyte-derived exosomes accelerated Ang II-induced cardiac fibroblast dysfunction compared with control exosomes. Furthermore, SR-exo significantly aggravated Ang II-induced cardiac remodeling, whereas MR-exo attenuated cardiac dysfunction. Mechanistically, ADRB3 KO or SR59230A treatment in brown adipocytes resulted an increase of iNOS (inducible nitric oxide synthase) in exosomes. Knockdown of iNOS in brown adipocytes reversed SR-exo-aggravated cardiac remodeling. CONCLUSIONS: Our data illustrated a new endocrine pattern of BAT in regulating cardiac remodeling, suggesting that activation of ADRB3 in brown adipocytes offers cardiac protection through suppressing exosomal iNOS.


Assuntos
Adipócitos Marrons , Remodelação Ventricular , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo
19.
Chin Med ; 16(1): 69, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348746

RESUMO

BACKGROUND: 3,3',4,5'-tetramethoxy-trans-stilbene (3,3',4,5'-TMS) and 3,4',5-trimethoxy-trans-stilbene (3,4',5-TMS) are two methoxy derivatives of resveratrol. Previous researches have proved that resveratrol and its analogues have anti-inflammatory effect through suppressing mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. This study aims to study whether 3,3',4,5'-TMS and 3,4',5-TMS alleviate inflammation and the underlying mechanism. METHODS: RAW 264.7 macrophage cells were treated with lipopolysaccharide (LPS) to induce inflammation and pretreated with 3,3',4,5'-TMS or 3,4',5-TMS. Cell viability was measured with the 3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) release was detected by Griess reagent. The secretions of pro-inflammatory cytokines were assessed by ELISA kits. Protein expressions of signaling molecules were determined by Western blotting. Reactive oxygen species (ROS) production was detected by fluorescence staining and malondialdehyde (MDA) assay. RESULTS: 3,3',4,5'-TMS and 3,4',5-TMS suppressed LPS-induced NO release and pro-inflammatory cytokines (IL-6 and TNF-α) secretions in a dose-dependent manner in RAW 264.7 cells. 3,3',4,5'-TMS and 3,4',5-TMS significantly down-regulated the LPS-induced expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and partially suppressed the activation of MAPK (phosphorylation of p38, JNK, ERK), and NF-κB (phosphorylation of IKKα/ß, p65 and IκBα) signaling pathways; where phosphorylation of ERK and p65 was mildly but not significantly decreased by 3,3',4,5'-TMS. LPS-induced NF-κB/p65 nuclear translocation was inhibited by both 3,3',4,5'-TMS and 3,4',5-TMS. Moreover, both resveratrol derivatives decreased the ROS levels. CONCLUSIONS: 3,3',4,5'-TMS and 3,4',5-TMS significantly suppress LPS-induced inflammation in RAW 264.7 cells through inhibition of MAPK and NF-κB signaling pathways and also provide anti-oxidative effect. This study reveals potential therapeutic applications of 3,3',4,5'-TMS and 3,4',5-TMS for inflammatory diseases.

20.
Front Cardiovasc Med ; 8: 664626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222364

RESUMO

Cardiac remodeling consisted of ventricular hypertrophy and interstitial fibrosis is the pathological process of many heart diseases. Fibroblasts as one of the major cells in the myocardium regulate the balance of the generation and degeneration of collagen, and these cells transform toward myofibroblasts in pathological state, contributing to the remodeling of the heart. Peroxisome proliferator-activated receptor-γ (PPAR-γ) coactivator-1α (PGC-1α) is vital to the function of mitochondria, which contributes to the energy production and reactive oxidative species (ROS)-scavenging activity in the heart. In this study, we found that fibroblast-specific PGC-1α KO induced cardiac remodeling especially fibrosis, and Angiotensin II (AngII) aggravated cardiac fibrosis, accompanied with a high level of oxidative stress response and inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA