Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 1): 131421, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641505

RESUMO

Nowadays, few investigations on the process parameters of grafted starch synthesized using electron transfer atom transfer radical polymerization (ARGET ATRP) and its applications in warp sizing and paper-making are presented. Therefore, this study aimed to survey the appropriate process parameters of bromoisobutyryl esterified starch-g-poly(acrylic acid) (BBES-g-PAA) synthesized by the ARGET ATRP, and also aimed to provide a new biobased BBES-g-PAA adhesive. The appropriate synthesis process parameters were 1.2, 0.32, and 0.6 in the molar ratios of vitamin C, CuBr2, and pentamethyldivinyltriamine to BBES, respectively, at 40 °C for 5 h. The BBES-g-PAA samples with a grafting ratio range of 4.63-14.14 % exhibited bonding forces of 57.8-64.6 N to wool fibers [55.5 N (BBES) and 53.8 N (ATS)], and their films showed breaking elongations of 3.29-3.80 % [2.74 % (BBES) and 2.49 % (ATS)] and tensile strengths of 29.1-25.4 MPa [30.4 MPa (BBES) and 34.7 MPa (ATS)]. Compared with BBES, significantly increased bonding forces and film elongations, and decreased film strengths for the BBES-g-PAA samples with grafting ratios ≥10.54 % were displayed (p < 0.05). The time (100-42 s) taken for the BBES-g-PAA films was significantly shorter than that of ATS (246 s) and BBES (196 s) films (p < 0.05), corresponding to better desizability.


Assuntos
Polimerização , Amido , Amido/química , Resistência à Tração , Resinas Acrílicas/química , Resinas Acrílicas/síntese química , Fibra de Lã , Transporte de Elétrons , Adesivos/química , Adesivos/síntese química
2.
Int J Biol Macromol ; 258(Pt 1): 128862, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134990

RESUMO

This study revealed the influence of phosphorylation-dimethylammonium chloride acyloxylation (PDACA) on the desizability, film properties, paste stability, and adhesion of biological starch macromolecules. A new starch-based sizing agent, phosphorylated-dimethylammonium chloride acyloxylated starch (PDACAS), was synthesized with degrees of substitution (DS) ranging from 0.033 to 0.065. Compared to control phosphorylated-quaternized starch (PQS, 87.4 %), the desizing efficiency of cotton yarns sized with PDACAS was ~94 %, exceeding the industrial minimum requirement of 90 %. The PDACAS film tensile properties were as follows: elongation at break of 3.31 %-3.78 %, bending endurance of 1131-1537 cycles, and tensile strength of 35.83-28.31 MPa, compared with those of acid-thinned starch (ATS) film (2.74 %, 957 cycles, and 38.12 MPa). The PDACAS had paste stability of ~92 %, compared with 83.3 % for ATS. The bonding forces (an indicator of adhesion to fibers) ranged from 107.1 N to 125.3 N for cotton roving, and 128.3 N to 148.7 N for polyester/cotton roving, which were significantly better than those of ATS (95 N for cotton and 117.9 N for polyester/cotton roving). Overall, PDACA treatment effectively avoided the adverse effect of high DS quaternization on the desizability of PQS and imparted good film properties, paste stability, and adhesion to starch.


Assuntos
Dimetilaminas , Fosfatos , Amido , Têxteis , Poliésteres , Resistência à Tração
3.
Molecules ; 28(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630274

RESUMO

Composites with excellent thermomechanical and thermochemical properties are urgently needed in the aerospace field, especially for structural applications under high-temperature conditions. Carbon fiber-reinforced Si-based composites are considered the most promising potential high-temperature materials due to their excellent oxidation resistance and ablative behaviors, good structural designability, and excellent mechanical properties. The reinforcement of the relevant composites mainly involves carbon fiber, which possesses good mechanical and temperature resistance abilities. In this paper, the ablation behaviors and mechanisms of related composites are reviewed. For carbon fiber-reinforced pure Si-based composites (C/SiM composites), the anti-ablation mechanism is mainly attributed to the continuous glassy SiO2, which inhibits the damage of the substrate. For C/SiM composite doping with refractory metal compounds, the oxides of Si and refractory metal together protect the main substrate from ablation and oxidation. Moreover, in addition to thermochemical damage, thermophysical and thermomechanical behavior severely destroy the surface coating of the substrate.

4.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903472

RESUMO

Porous carbon nanofibers (PCNFs) with excellent physical and chemical properties have been considered candidate materials for electrodes used in supercapacitors. Herein, we report a facile procedure to fabricate PCNFs through electrospinning blended polymers into nanofibers followed by pre-oxidation and carbonization. Polysulfone (PSF), high amylose starch (HAS), and phenolic resin (PR) are used as three different kinds of template pore-forming agents. The effects of pore-forming agents on the structure and properties of PCNFs have been systematically studied. The surface morphology, chemical components, graphitized crystallization, and pore characteristics of PCNFs are analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and nitrogen adsorption and desorption test, respectively. The pore-forming mechanism of PCNFs is analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Fabricated PCNF-R have a specific surface area as high as ~994 m2/g, a total pore volume as high as ~0.75 cm3/g, and a good graphitization degree. When PCNF-R are used as active materials to fabricate into electrodes, the PCNF-R electrodes show a high specific capacitance ~350 F/g, a good rate capability ~72.6%, a low internal resistance ~0.55 Ω, and an excellent cycling stability ~100% after 10,000 charging and discharging cycles. The design of low-cost PCNFs is expected to be widely applicable for the development of high-performance electrodes for an energy storage field.

5.
Nanomicro Lett ; 13(1): 190, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34498197

RESUMO

Durable electromagnetic interference (EMI) shielding is highly desired, as electromagnetic pollution is a great concern for electronics' stable performance and human health. Although a superhydrophobic surface can extend the service lifespan of EMI shielding materials, degradation of its protection capability and insufficient self-healing are troublesome issues due to unavoidable physical/chemical damages under long-term application conditions. Here, we report, for the first time, an instantaneously self-healing approach via microwave heating to achieve durable shielding performance. First, a hydrophobic 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS) layer was coated on a polypyrrole (PPy)-modified fabric (PPy@POTS), enabling protection against the invasion of water, salt solution, and corrosive acidic and basic solutions. Moreover, after being damaged, the POTS layer can, for the first time, be instantaneously self-healed via microwave heating for a very short time, i.e., 4 s, benefiting from the intense thermal energy generated by PPy under electromagnetic wave radiation. This self-healing ability is also repeatable even after intentionally severe plasma etching, which highlights the great potential to achieve robust and durable EMI shielding applications. Significantly, this approach can be extended to other EMI shielding materials where heat is a triggering stimulus for healing thin protection layers. We envision that this work could provide insights into fabricating EMI shielding materials with durable performance for portable and wearable devices, as well as for human health care.

6.
Recent Pat Nanotechnol ; 14(1): 46-55, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31656162

RESUMO

BACKGROUND: Nanofiber's productivity plagues nanofibrous membranes' applications in many areas. Herein, we present the needle-disk electrospinning to improve throughput. In this method, multiple high-curvature mentals are used as the spinning electrode. METHODS: Three aspects were investigated: 1) mechanism elucidation of the needle-disk electrospinning; 2) parameter optimization of the needle-disk electrospinning; 3) productivity improvement of the needle-disk electrospinning. RESULTS: Results show that high-curvature electrode evokes high electric field intensity, making lower voltage supply in spinning process. The needle number, needle length and needle curvature synergistically affect the spinning process and nanofiber morphology. Additionally, higher disk rotation velocity and higher voltage supply can also result in higher nanofiber's productivity. CONCLUSION: Compared with previous patents related to this topic, the needle-disk electrospinning is featured with the merits of high throughput, low voltage supply, controllable spinning process and nanofiber morphology, benefiting the nanofiber practical industrial employment and further applications of nanofiber-based materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA