Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mod Rheumatol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39235765

RESUMO

The commonest type of eukaryotic RNA modification, N6-methyladenosine (m6A), has drawn increased scrutiny in the context of pathological functioning as well as relevance in determination of RNA stability, splicing, transportation, localization, and translation efficiency. The m6A modification plays an important role in several types of arthritis, especially osteoarthritis and rheumatoid arthritis. Recent studies have reported that m6A modification regulates arthritis pathology in cells, such as chondrocytes and synoviocytes via immune responses and inflammatory responses through functional proteins classified as writers, erasers, and readers. The aim of this review was to highlight recent advances relevant to m6A modification in the context of arthritis pathogenesis and detail underlying molecular mechanisms, regulatory functions, clinical applications, and future perspectives of m6A in arthritis with the aim of providing a foundation for future research directions.

2.
Sci Transl Med ; 16(731): eadf4590, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38266107

RESUMO

The infrapatellar fat pad (IPFP) and synovium play essential roles in maintaining knee joint homeostasis and in the progression of osteoarthritis (OA). The cellular and transcriptional mechanisms regulating the function of these specialized tissues under healthy and diseased conditions are largely unknown. Here, single-cell and single-nuclei RNA sequencing of human IPFP and synovial tissues were performed to elucidate the cellular composition and transcriptional profile. Computational trajectory analysis revealed that dipeptidyl peptidase 4+ mesenchymal cells function as a common progenitor for IPFP adipocytes and synovial lining layer fibroblasts, suggesting that IPFP and synovium represent an integrated tissue unit. OA induced a profibrotic and inflammatory phenotype in mesenchymal lineage cells with biglycan+ intermediate fibroblasts as a major contributor to OA fibrosis. Apolipoprotein E (APOE) signaling from intermediate fibroblasts and macrophages was identified as a critical regulatory factor. Ex vivo incubation of human cartilage with soluble APOE accelerated proteoglycan degeneration. Inhibition of APOE signaling by intra-articular injection of an anti-APOE neutralizing antibody attenuated the progression of collagenase-induced OA in mice, demonstrating a detrimental effect of APOE on cartilage. Our studies provide a framework for designing further therapeutic strategies for OA by describing the cellular and transcriptional landscape of human IPFP and synovium in healthy versus OA joints.


Assuntos
Apolipoproteínas E , Transdução de Sinais , Humanos , Animais , Camundongos , Membrana Sinovial , Anticorpos Neutralizantes , Tecido Adiposo
3.
Adv Sci (Weinh) ; 11(3): e2303614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036301

RESUMO

Infrapatellar fat pad (IPFP) is closely associated with the development and progression of knee osteoarthritis (OA), but the underlying mechanism remains unclear. Here, it is find that IPFP from OA patients can secret small extracellular vesicles (sEVs) and deliver them into articular chondrocytes. Inhibition the release of endogenous osteoarthritic IPFP-sEVs by GW4869 significantly alleviated IPFP-sEVs-induced cartilage destruction. Functional assays in vitro demonstrated that IPFP-sEVs significantly promoted chondrocyte extracellular matrix (ECM) catabolism and induced cellular senescence. It is further demonstrated that IPFP-sEVs induced ECM degradation in human and mice cartilage explants and aggravated the progression of experimental OA in mice. Mechanistically, highly enriched let-7b-5p and let-7c-5p in IPFP-sEVs are essential to mediate detrimental effects by directly decreasing senescence negative regulator, lamin B receptor (LBR). Notably, intra-articular injection of antagomirs inhibiting let-7b-5p and let-7c-5p in mice increased LBR expression, suppressed chondrocyte senescence and ameliorated the progression of experimental OA model. This study uncovers the function and mechanism of the IPFP-sEVs in the progression of OA. Targeting IPFP-sEVs cargoes of let-7b-5p and let-7c-5p can provide a potential strategy for OA therapy.


Assuntos
Cartilagem Articular , Vesículas Extracelulares , Osteoartrite do Joelho , Humanos , Camundongos , Animais , Cartilagem Articular/metabolismo , Articulação do Joelho/metabolismo , Tecido Adiposo/metabolismo , Osteoartrite do Joelho/metabolismo , Vesículas Extracelulares/metabolismo
4.
Cell Death Dis ; 13(8): 695, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945200

RESUMO

Inflammatory cytokines-induced activation of the nuclear factor κB (NF-κB) pathway plays a critical role in the pathogenesis of osteoarthritis (OA). Circular RNA (circRNA) has been identified as important epigenetic factor in numerous diseases. However, the biological roles of inflammation-related circRNAs in regulating OA pathogenesis remain elusive. Here, we revealed circRNA expression profiles in human primary chondrocytes with interleukin-1ß (IL-1ß) stimulation by circRNA sequencing. We identified a highly upregulated circRNA, termed as circNFKB1 in inflamed chondrocytes and osteoarthritic cartilage. As a circRNA derived from exon 2-5 of NFKB1, circNFKB1 is located in both cytoplasm and nucleus of chondrocytes. Furthermore, knockdown of circNFKB1 inhibited extracellular matrix (ECM) catabolism and rescued IL-1ß impaired ECM anabolism whereas ectopic expression of circNFKB1 significantly promoted chondrocytes degradation in vitro. Moreover, intraarticular injection of adenovirus-circNFKB1 in mouse joints triggered spontaneous cartilage loss and OA development. Mechanistically, circNFKB1 interacted with α-enolase (ENO1), regulated the expression of its parental gene NFKB1 and sustained the activation of NF-κB signaling pathway in chondrocytes. Therefore, this study highlights a novel ENO1-interacting circNFKB1 in OA pathogenesis, and provides valuable insights into understanding the regulatory mechanism of NF-κB signaling in chondrocytes and a promising therapeutic target for the treatment of OA.


Assuntos
Cartilagem Articular , Subunidade p50 de NF-kappa B/genética , Osteoartrite , RNA Circular/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Osteoartrite/metabolismo , Fosfopiruvato Hidratase/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
5.
Sci Signal ; 15(735): eabm6265, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35609127

RESUMO

Inflammatory cytokine-induced activation of nuclear factor κB (NF-κB) signaling plays a critical role in the pathogenesis of osteoarthritis (OA). We identified PILA as a long noncoding RNA (lncRNA) that enhances NF-κB signaling and OA. The abundance of PILA was increased in damaged cartilage from patients with OA and in human articular chondrocytes stimulated with the proinflammatory cytokine tumor necrosis factor (TNF). Knockdown of PILA inhibited TNF-induced NF-κB signaling, extracellular matrix catabolism, and apoptosis in chondrocytes, whereas ectopic expression of PILA promoted NF-κB signaling and matrix degradation. PILA promoted PRMT1-mediated arginine methylation of DExH-box helicase 9 (DHX9), leading to an increase in the transcription of the gene encoding transforming growth factor ß-activated kinase 1 (TAK1), an upstream activator of NF-κB signaling. Furthermore, intra-articular injection of an adenovirus vector encoding PILA triggered spontaneous cartilage loss and exacerbated posttraumatic OA in mice. This study provides insight into the regulation of NF-κB signaling in OA and identifies a potential therapeutic target for this disease.


Assuntos
Cartilagem Articular , Osteoartrite , RNA Longo não Codificante , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Interleucina-1beta/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Osteoartrite/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA