Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cells ; 12(21)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947636

RESUMO

T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to a persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3, and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct, with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.


Assuntos
Neoplasias , Linfócitos T , Camundongos , Animais , Antígeno CTLA-4/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias/metabolismo , Imunoterapia
2.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37503045

RESUMO

T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3 and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and a biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.

3.
Sci Adv ; 9(13): eade6623, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000868

RESUMO

Lattice light sheet microscopy excels at the noninvasive imaging of three-dimensional (3D) dynamic processes at high spatiotemporal resolution within cells and developing embryos. Recently, several papers have called into question the performance of lattice light sheets relative to the Gaussian sheets most common in light sheet microscopy. Here, we undertake a theoretical and experimental analysis of various forms of light sheet microscopy, which demonstrates and explains why lattice light sheets provide substantial improvements in resolution and photobleaching reduction. The analysis provides a procedure to select the correct light sheet for a desired experiment and specifies the processing that maximizes the use of all fluorescence generated within the light sheet excitation envelope for optimal resolution while minimizing image artifacts and photodamage. We also introduce a new type of "harmonic balanced" lattice light sheet that improves performance at all spatial frequencies within its 3D resolution limits and maintains this performance over lengthened propagation distances allowing for expanded fields of view.

4.
Sci Signal ; 13(649)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934075

RESUMO

The killing of tumor cells by CD8+ T cells is suppressed by the tumor microenvironment, and increased expression of inhibitory receptors, including programmed cell death protein-1 (PD-1), is associated with tumor-mediated suppression of T cells. To find cellular defects triggered by tumor exposure and associated PD-1 signaling, we established an ex vivo imaging approach to investigate the response of antigen-specific, activated effector CD8+ tumor-infiltrating lymphocytes (TILs) after interaction with target tumor cells. Although TIL-tumor cell couples readily formed, couple stability deteriorated within minutes. This was associated with impaired F-actin clearing from the center of the cellular interface, reduced Ca2+ signaling, increased TIL locomotion, and impaired tumor cell killing. The interaction of CD8+ T lymphocytes with tumor cell spheroids in vitro induced a similar phenotype, supporting a critical role of direct T cell-tumor cell contact. Diminished engagement of PD-1 within the tumor, but not acute ex vivo blockade, partially restored cell couple maintenance and killing. PD-1 thus contributes to the suppression of TIL function by inducing a state of impaired subcellular organization.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Experimentais/imunologia , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia/métodos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/genética , Microambiente Tumoral/imunologia
5.
Mol Biol Cell ; 31(7): 655-666, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31774723

RESUMO

PC12 cells are a popular model system to study changes driving and accompanying neuronal differentiation. While attention has been paid to changes in transcriptional regulation and protein signaling, much less is known about the changes in organization that accompany PC12 differentiation. Fluorescence microscopy can provide extensive information about these changes, although it is difficult to continuously observe changes over many days of differentiation. We describe a generative model of differentiation-associated changes in cell and nuclear shape and their relationship to mitochondrial distribution constructed from images of different cells at discrete time points. We show that the model accurately represents complex cell and nuclear shapes and learn a regression model that relates cell and nuclear shape to mitochondrial distribution; the predictive accuracy of the model increases during differentiation. Most importantly, we propose a method, based on cell matching and interpolation, to produce realistic simulations of the dynamics of cell differentiation from only static images. We also found that the distribution of cell shapes is hollow: most shapes are very different from the average shape. Finally, we show how the method can be used to model nuclear shape changes of human-induced pluripotent stem cells resulting from drug treatments.


Assuntos
Diferenciação Celular , Imageamento Tridimensional , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Animais , Forma do Núcleo Celular , Forma Celular , Tamanho Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Cinética , Mitocôndrias/metabolismo , Fator de Crescimento Neural/farmacologia , Células PC12 , Probabilidade , Ratos
6.
Elife ; 82019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31663508

RESUMO

Supramolecular signaling assemblies are of interest for their unique signaling properties. A µm scale signaling assembly, the central supramolecular signaling cluster (cSMAC), forms at the center of the interface of T cells activated by antigen-presenting cells. We have determined that it is composed of multiple complexes of a supramolecular volume of up to 0.5 µm3 and associated with extensive membrane undulations. To determine cSMAC function, we have systematically manipulated the localization of three adaptor proteins, LAT, SLP-76, and Grb2. cSMAC localization varied between the adaptors and was diminished upon blockade of the costimulatory receptor CD28 and deficiency of the signal amplifying kinase Itk. Reconstitution of cSMAC localization restored IL-2 secretion which is a key T cell effector function as dependent on reconstitution dynamics. Our data suggest that the cSMAC enhances early signaling by facilitating signaling interactions and attenuates signaling thereafter through sequestration of a more limited set of signaling intermediates.


Cells receive dozens of signals at different times and in different places. Integrating incoming information and deciding how to respond is no easy task. Signaling molecules on the cell surface pass messages inwards using chemical messengers that interact in complicated networks within the cell. One way to unravel the complexity of these networks is to look at specific groups of signaling molecules in test tubes to see how they interact. But the interior of a living cell is a very different environment. Molecules inside cells are tightly packed and, under certain conditions, they interact with each other by the thousands. They form structures known as 'supramolecular complexes', which changes their behavior. One such supramolecular complex is the 'central supramolecular activation cluster', or cSMAC for short. It forms under the surface of immune cells called T cells when they are getting ready to fight an infection. Under the microscope, the cSMAC looks like the bullseye of a dartboard, forming a crowd of signaling molecules at the center of the interface between the T cell and another cell. Its exact role is not clear, but evidence suggests it helps to start and stop the signals that switch T cells on. The cSMAC contains two key protein adaptors called LAT and SLP-76 that help to hold the structure together. So, to find out what the cSMAC does, Clark et al. genetically modified these adaptors to gain control over when the cSMAC forms. Clark et al. examined mouse T cells using super-resolution microscopy and electron microscopy, watching as other immune cells delivered the signal to switch on. As the T cells started to activate, the composition of the cSMAC changed. In the first two minutes after the cells started activating, the cSMAC included a large number of different components. This made T cell activation more efficient, possibly because the supramolecular complex was helping the network of signals to interact. Later, the cSMAC started to lose many of these components. Separating components may have helped to stop the activation signals. Understanding how T cells activate could lead to the possibility of turning them on or off in immune-related diseases. But these findings are not just relevant to immune cells. Other cells also use supramolecular complexes to control their signaling. Investigating how these complexes change over time could help us to understand how other cell types make decisions.


Assuntos
Células Apresentadoras de Antígenos/fisiologia , Comunicação Celular , Interleucina-2/metabolismo , Linfócitos T/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos CD28/metabolismo , Células Cultivadas , Proteína Adaptadora GRB2/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Fosfoproteínas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
7.
Methods Mol Biol ; 1945: 251-264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945250

RESUMO

This chapter describes the procedures necessary to create generative models of the spatial organization of cells directly from microscope images and use them to automatically provide geometries for spatial simulations of cell processes and behaviors. Such models capture the statistical variation in the overall cell architecture as well as the number, shape, size, and spatial distribution of organelles and other structures. The different steps described include preparing images, learning models, evaluating model quality, creating sampled cell geometries by various methods, and combining those geometries with biochemical model specifications to enable simulations.


Assuntos
Células/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Organelas/ultraestrutura
8.
Bioinformatics ; 35(14): 2475-2485, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30535313

RESUMO

MOTIVATION: Cell shape provides both geometry for, and a reflection of, cell function. Numerous methods for describing and modeling cell shape have been described, but previous evaluation of these methods in terms of the accuracy of generative models has been limited. RESULTS: Here we compare traditional methods and deep autoencoders to build generative models for cell shapes in terms of the accuracy with which shapes can be reconstructed from models. We evaluated the methods on different collections of 2D and 3D cell images, and found that none of the methods gave accurate reconstructions using low dimensional encodings. As expected, much higher accuracies were observed using high dimensional encodings, with outline-based methods significantly outperforming image-based autoencoders. The latter tended to encode all cells as having smooth shapes, even for high dimensions. For complex 3D cell shapes, we developed a significant improvement of a method based on the spherical harmonic transform that performs significantly better than other methods. We obtained similar results for the joint modeling of cell and nuclear shape. Finally, we evaluated the modeling of shape dynamics by interpolation in the shape space. We found that our modified method provided lower deformation energies along linear interpolation paths than other methods. This allows practical shape evolution in high dimensional shape spaces. We conclude that our improved spherical harmonic based methods are preferable for cell and nuclear shape modeling, providing better representations, higher computational efficiency and requiring fewer training images than deep learning methods. AVAILABILITY AND IMPLEMENTATION: All software and data is available at http://murphylab.cbd.cmu.edu/software. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Núcleo Celular , Imageamento Tridimensional
9.
Bioinformatics ; 33(14): i217-i224, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28881992

RESUMO

MOTIVATION: Efforts to model how signaling and regulatory networks work in cells have largely either not considered spatial organization or have used compartmental models with minimal spatial resolution. Fluorescence microscopy provides the ability to monitor the spatiotemporal distribution of many molecules during signaling events, but as of yet no methods have been described for large scale image analysis to learn a complex protein regulatory network. Here we present and evaluate methods for identifying how changes in concentration in one cell region influence concentration of other proteins in other regions. RESULTS: Using 3D confocal microscope movies of GFP-tagged T cells undergoing costimulation, we learned models containing putative causal relationships among 12 proteins involved in T cell signaling. The models included both relationships consistent with current knowledge and novel predictions deserving further exploration. Further, when these models were applied to the initial frames of movies of T cells that had been only partially stimulated, they predicted the localization of proteins at later times with statistically significant accuracy. The methods, consisting of spatiotemporal alignment, automated region identification, and causal inference, are anticipated to be applicable to a number of biological systems. AVAILABILITY AND IMPLEMENTATION: The source code and data are available as a Reproducible Research Archive at http://murphylab.cbd.cmu.edu/software/2017_TcellCausalModels/. CONTACT: murphy@cmu.edu.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Transdução de Sinais , Software , Algoritmos , Humanos , Proteínas/análise , Linfócitos T/metabolismo
10.
Sci Signal ; 9(424): rs3, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27095595

RESUMO

Fluorescence microscopy is one of the most important tools in cell biology research because it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells. However, given extensive cell-to-cell variation, these data cannot be readily assembled into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. We have developed a method to enable comparison of imaging data from many cells and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28. We imaged actin and eight core actin regulators to generate over a thousand movies of T cells under conditions in which CD28 was either engaged or blocked in the context of a strong TCR signal. Our computational analysis showed that the primary effect of costimulation blockade was to decrease recruitment of the activator of actin nucleation WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) and the actin-severing protein cofilin to F-actin. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics caused by costimulation blockade. Thus, we have developed and validated an approach to quantify protein distributions in time and space for the analysis of complex regulatory systems.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Biologia Computacional/métodos , Linfócitos T/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Fatores de Despolimerização de Actina/genética , Animais , Western Blotting , Antígenos CD28/genética , Antígenos CD28/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sinapses Imunológicas/metabolismo , Cinética , Ativação Linfocitária , Camundongos Transgênicos , Microscopia de Fluorescência , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Imagem com Lapso de Tempo/métodos , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA