Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39297760

RESUMO

The nuclear imaging system has been capturing neutron images of inertial confinement fusion (ICF) driven implosions for over a decade at the National Ignition Facility. This imaging system has evolved from one to three nearly orthogonal lines-of-sight, allowing for the study of three-dimensional shape characteristics of ignition shots. Limited-view tomography algorithms help visualize the burning hotspot in 3D and assess neutron source geometry using Legendre mode parameters. With its neutron, gamma-ray, and x-ray image reconstruction capabilities, NIS has provided critical insight into mechanisms that have limited implosion performance, such as fill tube diameter for ignition-type targets. This comprehensive diagnostic suite opens a window into the shape characteristics of ignition shots and how symmetry affects ICF implosion performance. In more recent ignition shots, neutron yields have visibly increased. Analyzing the shape and size of the reconstructed neutron source has shown an expansion of the burn volume, which is indicative of more efficient alpha heating during the implosion process.

2.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39207189

RESUMO

Neutron imaging systems are important diagnostic tools for characterizing the physics of inertial confinement fusion reactions at the National Ignition Facility (NIF). In particular, neutron images give diagnostic information on the size, symmetry, and shape of the fusion hot spot and surrounding cold fuel. Images are formed via collection of neutron flux from the source using a system of aperture arrays and scintillator-based detectors. Currently, reconstruction of fusion source geometry from the collected neutron images is accomplished by solving a computationally intensive maximum likelihood estimation problem via expectation maximization. In contrast, it is often useful to have simple representations of the overall source geometry that can be computed quickly. In this work, we develop convolutional neural networks (CNNs) to reconstruct the outer contours of simple source geometries. We compare the performance of the CNN for penumbral and pinhole data and provide experimental demonstrations of our methods on both non-noisy and noisy data.

3.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38888398

RESUMO

The nuclear imaging system at the National Ignition Facility (NIF) is a crucial diagnostic for determining the geometry of inertial confinement fusion implosions. The geometry is reconstructed from a neutron aperture image via a set of reconstruction algorithms using an iterative Bayesian inference approach. An important step in these reconstruction algorithms is finding the fusion source location within the camera field-of-view. Currently, source localization is achieved via an iterative optimization algorithm. In this paper, we introduce a machine learning approach for source localization. Specifically, we train a convolutional neural network to predict source locations given a neutron aperture image. We show that this approach decreases computation time by several orders of magnitude compared to the current optimization-based source localization while achieving similar accuracy on both synthetic data and a collection of recent NIF deuterium-tritium shots.

4.
Rev Sci Instrum ; 93(10): 103525, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319391

RESUMO

Gas Cherenkov detectors provide a time resolved measurement of the fusion burn in inertial confinement fusion experiments. The fusion rate delivers critical benchmark figures, such as burn width and bang time. Recent detector improvements pushed temporal resolution to 10 ps to make burn width measurements on igniting targets possible. First high temporal resolution measurements using CO2 gas fills had a background signal with a long decay length (tail), which was caused by gas scintillation. This gas scintillation limits the ability of the detector to resolve short burn width and high frequency features in the fusion rate measurements. A thorough investigation of the cause of the tail and mitigation options for gas scintillation is presented here. As a near-term resolution, neon gas is being used to extract fusion burn histories. Paths forward for the next generation of gas Cherenkov detectors are identified including the usage of oxygen as a Cherenkov medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA