Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Endocr Soc ; 7(10): bvad113, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693686

RESUMO

Immunohistochemical visualization of progesterone receptor (PR)-expressing cells in the brain is a powerful technique to investigate the role of progesterone in the neuroendocrine regulation of fertility. A major obstacle to the immunohistochemical visualization of progesterone-sensitive cells in the rodent brain has been the discontinuation of the commercially produced A0098 rabbit polyclonal PR antibody by DAKO. To address the unavailability of this widely used PR antibody, we optimized and evaluated 4 alternative commercial PR antibodies and found that each lacked the specificity and/or sensitivity to immunohistochemically label PR-expressing cells in paraformaldehyde-fixed female mouse brain sections. As a result, we developed and validated a new custom RC269 PR antibody, directed against the same 533-547 amino acid sequence of the human PR as the discontinued A0098 DAKO PR antibody. Immunohistochemical application of the RC269 PR antibody on paraformaldehyde-fixed mouse brain sections resulted in nuclear PR labeling that was highly distinguishable from background, specific to its antigen, highly regulated by estradiol, matched the known distribution of PR protein expression in the female mouse hypothalamus, and nearly identical to that of the discontinued A0098 DAKO PR antibody. In summary, the RC269 PR antibody is a specific and sensitive antibody to immunohistochemically visualize PR-expressing cells in the mouse brain.

2.
Front Endocrinol (Lausanne) ; 14: 1116482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875467

RESUMO

Introduction: Polycystic ovary syndrome (PCOS) is the most common infertility disorder worldwide, typically characterised by high circulating androgen levels, oligo- or anovulation, and polycystic ovarian morphology. Sexual dysfunction, including decreased sexual desire and increased sexual dissatisfaction, is also reported by women with PCOS. The origins of these sexual difficulties remain largely unidentified. To investigate potential biological origins of sexual dysfunction in PCOS patients, we asked whether the well-characterized, prenatally androgenized (PNA) mouse model of PCOS exhibits modified sex behaviours and whether central brain circuits associated with female sex behaviour are differentially regulated. As a male equivalent of PCOS is reported in the brothers of women with PCOS, we also investigated the impact of maternal androgen excess on the sex behaviour of male siblings. Methods: Adult male and female offspring of dams exposed to dihydrotestosterone (PNAM/PNAF) or an oil vehicle (VEH) from gestational days 16 to 18 were tested for a suite of sex-specific behaviours. Results: PNAM showed a reduction in their mounting capabilities, however, most of PNAM where able to reach ejaculation by the end of the test similar to the VEH control males. In contrast, PNAF exhibited a significant impairment in the female-typical sexual behaviour, lordosis. Interestingly, while neuronal activation was largely similar between PNAF and VEH females, impaired lordosis behaviour in PNAF was unexpectedly associated with decreased neuronal activation in the dorsomedial hypothalamic nucleus (DMH). Conclusion: Taken together, these data link prenatal androgen exposure that drives a PCOS-like phenotype with altered sexual behaviours in both sexes.


Assuntos
Lordose , Síndrome do Ovário Policístico , Feminino , Masculino , Gravidez , Humanos , Animais , Camundongos , Androgênios , Irmãos , Virilismo
3.
Endocrinology ; 160(10): 2230-2242, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31265059

RESUMO

Polycystic ovary syndrome (PCOS) is a prevalent and distressing disorder of largely unknown etiology. Although PCOS defined by ovarian dysfunction, accumulating evidence supports a critical role for the brain in the ontogeny and pathophysiology of PCOS. A critical pathological feature of PCOS is impaired gonadal steroid hormone negative feedback to the GnRH neuronal network in the brain that regulates fertility. This impairment is associated with androgen excess, a cardinal feature of PCOS. Impaired steroid hormone feedback to GnRH neurons is thought to drive hyperactivity of the neuroendocrine axis controlling fertility, leading to a vicious cycle of androgen excess and reproductive dysfunction. Decades of clinical research have been unable to uncover the mechanisms underlying this impairment, because of the extreme difficulty in studying the brain in humans. It is only recently, with the development of preclinical models of PCOS, that we have begun to unravel the role of the brain in the development and progression of PCOS. Here, we provide a succinct overview of what is known about alterations in the steroid hormone-sensitive GnRH neuronal network that may underlie the neuroendocrine defects in clinical PCOS, with a particular focus on those that may contribute to impaired progesterone negative feedback, and the likely role of androgens in driving this impairment.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Sistemas Neurossecretores/fisiopatologia , Neurotransmissores/metabolismo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Animais , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA