Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
ACS Appl Mater Interfaces ; 16(43): 58520-58535, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39404487

RESUMO

A novel oxygen evolution reaction (OER) electrocatalyst was prepared by a synthesis strategy consisting of the solvothermal growth of Ni3S2 nanostructures on Ni foam, followed by hydrothermal incorporation of Fe species (Fe-Ni3S2/Ni foam). This electrocatalyst displayed a low OER overpotential of 230 mV at 100 mA·cm-2, a low Tafel slope of 43 mV·dec-1, and constant performance at an industrially relevant current density (500 mA·cm-2) over 100 h in a 1.0 M KOH electrolyte, despite a minor loss of Fe in the process. Based on a detailed characterization by (in situ) Raman spectroscopy, (quasi-in situ) XPS, SEM, TEM, XRD, ICP-AES, EIS, and Cdl analysis, the high OER activity and stability of Fe-Ni3S2/Ni foam were attributed to the nanostructuring of the surface in the form of stable nanosheets and to the combination of Ni3S2 granting suitable electrical conductivity with newly formed NiFe-based (oxy)hydroxides at the surface of the material providing the active sites for OER.

2.
Nanoscale ; 16(33): 15770-15781, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39113556

RESUMO

Hydrogen is a promising alternative fuel that can push forward the energy transition because of its high energy density (142 MJ kg-1), variety of potential sources, low weight and low environmental impact, but its storage for automotive applications remains a formidable challenge. MgH2, with its high gravimetric and volumetric density, presents a compelling platform for hydrogen storage; however, its utilization is hindered by the sluggish kinetics of hydrogen uptake/release and high temperature operation. Herein we show that a novel layered heterostructure of reduced graphene oxide and organosilica with high specific surface area and narrow pore size distribution can serve as a scaffold to host MgH2 nanoparticles with a narrow diameter distribution around ∼2.5 nm and superior hydrogen storage properties to bulk MgH2. Desorption studies showed that hydrogen release starts at relatively low temperature, with a maximum at 348 °C and kinetics dependent on particle size. Reversibility tests demonstrated that the dehydrogenation kinetics and re-hydrogenation capacity of the system remains stable at 1.62 wt% over four cycles at 200 °C. Our results prove that MgH2 confinement in a nanoporous scaffold is an efficient way to constrain the size of the hydride particles, avoid aggregation and improve kinetics for hydrogen release and recharging.

3.
Small ; : e2403277, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046063

RESUMO

Group-14 Xenes beyond graphene such as silicene, germanene, and stanene have recently gained a lot of attention for their peculiar electronic properties, which can be tuned by covalent functionalization. Up until now, reported methods for the top-down synthesis of covalently functionalized silicene and germanene typically yield multilayered flakes with a minimum thickness of 100 nm. Herein, the ex situ covalent functionalization of germanene (fGe) is reported via 1,3-dipolar cycloaddition of the azomethine ylide generated by the decarboxylative condensation of 3,4-dihydroxybenzaldehyde and sarcosine. Amorphous few-layered sheets (average thickness of ≈6 nm) of dipolarophile germanene (GeX) are produced by thermal dehydrogenation of its fully saturated parent precursor, germanane (GeH). Spectroscopic evidence confirmed the emergence of the dipolarophilic sp2 domains due to the dehydrogenation of germanane, and their sp3 hybridization due to the covalent functionalization of germanene. Elemental mapping of the functionalized germanene revealed flakes with a very high abundance of carbon uniformly covering the germanium backbone. The 500 meV increase of the optical bandgap of germanene observed upon functionalization paves the way toward bandgap engineering of other group-14 Xenes, which could potentially be a major turning point in the fields of electronics, electrocatalysis, and photocatalysis.

4.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893564

RESUMO

Rare earth bisphthalocyanines (MPc2) are of particular interest because of their behavior as single-molecular magnets, which makes them suitable for applications in molecular spintronics, high-density data storage and quantum computation. Nevertheless, MPc2 are not commercially available, and the synthesis routes are mainly focused on obtaining substituted phthalocyanines. Two preparation routes depend on the precursor: synthesis from phthalonitrile (PN) and the metalation of free or dilithium phthalocyanine (H2Pc and Li2Pc). In both options, byproducts such as free-base phthalocyanine and in the first route additional PN oligomers are generated, which influence the MPc2 yield. There are three preparation methods for these routes: heating, microwave radiation and reflux. In this research, solvothermal synthesis was applied as a new approach to prepare yttrium, lanthanum, gadolinium and terbium unsubstituted bisphthalocyanines using Li2Pc and the rare earth(III) acetylacetonates. Purification by sublimation gave high product yields compared to those reported, namely 68% for YPc2, 43% for LaPc2, 63% for GdPc2 and 62% for TbPc2, without any detectable presence of H2Pc. Characterization by infrared, Raman, ultraviolet-visible and X-ray photoelectron spectroscopy as well as elemental analysis revealed the main featuresof the four bisphthalocyanines, indicating the success of the synthesis of the complexes.

5.
EES Catal ; 2(1): 262-275, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38222062

RESUMO

Hydrogen peroxide (H2O2) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H2O2 serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeOx) nanoparticles (NPs) for successful photochemical oxygen reduction to H2O2 under visible light illumination (445 nm). Achieving a selectivity for H2O2 of >99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H2O2 with visible light (445 nm) at ambient temperatures and pressures (9.4-14.8 mmol g-1 L-1). Reaching productivities of H2O2 of at least 1.7 ± 0.3 mmol g-1 L-1 h-1, production of H2O2 was further possible via sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.

6.
Nanomaterials (Basel) ; 13(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132981

RESUMO

The integration of carbon nanostructures with semiconductor nanowires holds significant potential for energy-efficient integrated circuits. However, achieving precise control over the positioning and stability of these interconnections poses a major challenge. This study presents a method for the controlled growth of carbon nanofibers (CNFs) on vertically aligned indium arsenide (InAs) nanowires. The CNF/InAs hybrid structures, synthesized using chemical vapor deposition (CVD), were successfully produced without compromising the morphology of the pristine nanowires. Under optimized conditions, preferential growth of the carbon nanofibers in the direction perpendicular to the InAs nanowires was observed. Moreover, when the CVD process employed iron as a catalyst, an increased growth rate was achieved. With and without the presence of iron, carbon nanofibers nucleate preferentially on the top of the InAs nanowires, indicating a tip growth mechanism presumably catalysed by a gold-indium alloy that selectively forms in that region. These results represent a compelling example of controlled interconnections between adjacent InAs nanowires formed by carbon fibers.

7.
ACS Appl Mater Interfaces ; 15(26): 31899-31916, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345686

RESUMO

Electrically conductive polymer nanocomposites have been the subject of intense research due to their promising potential as piezoresistive biomedical sensors, leveraging their flexibility and biocompatibility. Although intrinsically conductive polymers such as polypyrrole (PPy) and polyaniline have emerged as lucrative candidates, they are extremely limited in their processability by conventional solution-based approaches. In this work, ultrathin nanostructured coatings of doped PPy are realized on polyurethane films of different architectures via oxidative chemical vapor deposition to develop stretchable and flexible resistance-based strain sensors. Holding the substrates perpendicular to the reactant flows facilitates diffusive transport and ensures excellent conformality of the interfacial integrated PPy coatings throughout the 3D porous electrospun fiber mats in a single step. This allows the mechanically robust (stretchability > 400%, with fatigue resistance up to 1000 cycles) nanocomposites to elicit a reversible change of electrical resistance when subjected to consecutive cycles of stretching and releasing. The repeatable performance of the strain sensor is linear due to dimensional changes of the conductive network in the low-strain regime (ε ≤ 50%), while the evolution of nano-cracks leads to an exponential increase, which is observed in the high-strain regime, recording a gauge factor as high as 46 at 202% elongational strain. The stretchable conductive polymer nanocomposites also show biocompatibility toward human dermal fibroblasts, thus providing a promising path for use as piezoresistive strain sensors and finding applications in biomedical applications such as wearable, skin-mountable flexible electronics.

8.
Biomolecules ; 13(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37189390

RESUMO

In the field of biocatalysis, the implementation of sustainable processes such as enzyme immobilization or employment of environmentally friendly solvents, like Deep Eutectic Solvents (DESs) are of paramount importance. In this work, tyrosinase was extracted from fresh mushrooms and used in a carrier-free immobilization towards the preparation of both non-magnetic and magnetic cross-linked enzyme aggregates (CLEAs). The prepared biocatalyst was characterized and the biocatalytic and structural traits of free tyrosinase and tyrosinase magnetic CLEAs (mCLEAs) were evaluated in numerous DES aqueous solutions. The results showed that the nature and the concentration of the DESs used as co-solvents significantly affected the catalytic activity and stability of tyrosinase, while the immobilization enhanced the activity of the enzyme in comparison with the non-immobilized enzyme up to 3.6-fold. The biocatalyst retained the 100% of its initial activity after storage at -20 °C for 1 year and the 90% of its activity after 5 repeated cycles. Tyrosinase mCLEAs were further applied in the homogeneous modification of chitosan with caffeic acid in the presence of DES. The biocatalyst demonstrated great ability in the functionalization of chitosan with caffeic acid in the presence of 10% v/v DES [Bet:Gly (1:3)], enhancing the antioxidant activity of the films.


Assuntos
Quitosana , Monofenol Mono-Oxigenase , Solventes/química , Solventes Eutéticos Profundos , Biocatálise , Enzimas Imobilizadas/química , Água , Estabilidade Enzimática
10.
Sci Rep ; 13(1): 2068, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740719

RESUMO

The synthesis and design of two-dimensional supramolecular assemblies with specific functionalities is one of the principal goals of the emerging field of molecule-based electronics, which is relevant for many technological applications. Although a large number of molecular assemblies have been already investigated, engineering uniform and highly ordered two-dimensional molecular assemblies is still a challenge. Here we report on a novel approach to prepare wide highly crystalline molecular assemblies with tunable structural properties. We make use of the high-reactivity of the carboxylic acid functional moiety and of the predictable structural features of non-polar alkane chains to synthesize 2D supramolecular assemblies of 4-(decyloxy)benzoic acid (4DBA;C[Formula: see text]H[Formula: see text]O[Formula: see text]) on a Au(111) surface. By means of scanning tunneling microscopy, density functional theory calculations and photoemission spectroscopy, we demonstrate that these molecules form a self-limited highly ordered and defect-free two-dimensional single-layer film of micrometer-size, which exhibits a nearly-freestanding character. We prove that by changing the length of the alkoxy chain it is possible to modify in a controlled way the molecular density of the "floating" overlayer without affecting the molecular assembly. This system is especially suitable for engineering molecular assemblies because it represents one of the few 2D molecular arrays with specific functionality where the structural properties can be tuned in a controlled way, while preserving the molecular pattern.

11.
Nat Commun ; 14(1): 664, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750751

RESUMO

Polydopamine is a biomimetic self-adherent polymer, which can be easily deposited on a wide variety of materials. Despite the rapidly increasing interest in polydopamine-based coatings, the polymerization mechanism and the key intermediate species formed during the deposition process are still controversial. Herein, we report a systematic investigation of polydopamine formation on halloysite nanotubes; the negative charge and high surface area of halloysite nanotubes favour the capture of intermediates that are involved in polydopamine formation and decelerate the kinetics of the process, to unravel the various polymerization steps. Data from X-ray photoelectron and solid-state nuclear magnetic resonance spectroscopies demonstrate that in the initial stage of polydopamine deposition, oxidative coupling reaction of the dopaminechrome molecules is the main reaction pathway that leads to formation of polycatecholamine oligomers as an intermediate and the post cyclization of the linear oligomers occurs subsequently. Furthermore, TRIS molecules are incorporated into the initially formed oligomers.

12.
ACS Sustain Chem Eng ; 11(5): 1985-1994, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36778523

RESUMO

Keratin is an important byproduct of the animal industry, but almost all of it ends up in landfills due to a lack of efficient recycling methods. To make better use of keratin-based natural resources, the current extraction and processing strategies need to be improved or replaced by more sustainable and cost-effective processes. Here, we developed a simple and environmentally benign method to process extracted keratin, using HCl to induce the formation of a coacervate, a separate aqueous phase with a very high protein concentration. Remarkably, this pH-induced coacervation did not result in the denaturation of keratin, and we could even observe an increase in the amount of ordered secondary structures. The low-pH coacervates could be extruded and wet-spun into high-performance keratin fibers, without requiring heating or any organic solvents. The secondary structure of keratin was largely conserved in these regenerated fibers, which exhibited excellent mechanical performance. The process developed in this study represents a simple and environmentally friendly strategy to upcycle waste keratin into high-performance materials.

13.
Nanoscale ; 15(5): 2402-2416, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36651239

RESUMO

Administration of temperature-responsive drug carriers that release anticancer drugs at high temperatures can benefit hyperthermia therapies because of the synergistic effect of anticancer drug molecules and high temperature on killing the cancer cells. In this study, we design and characterize a new temperature-responsive nanocarrier based on a naturally occurring and biocompatible clay mineral, halloysite nanotubes. Poly(N-isopropylacrylamide) brushes were grown on the surface of halloysite nanotubes using a combination of mussel-inspired dopamine polymerization and surface-initiated atom transfer radical polymerization. The chemical structure of the hybrid materials was investigated using X-ray photoelectron spectroscopy, thermogravimetric analysis and energy-dispersive X-ray spectroscopy. The hybrid material was shown to have a phase transition temperature of about 32 °C, corresponding to a 40 nm thick polymer layer surrounding the nanotubes. Cell studies suggested that grafting of poly(N-isopropylacrylamide) brushes on the polydopamine-modified halloysite nanotubes suppresses the cytotoxicity caused by the polydopamine interlayer and drug release studies on nanotubes loaded with doxorubicin showed that thanks to the poly(N-isopropylacrylamide) brushes a temperature-dependent drug release is observed. Finally, a fluorescent dye molecule was covalently attached to the polymer-grafted nanotubes and stimulated emission depletion nanoscopy was used to confirm the internalization of the nanotubes in HeLa cells.


Assuntos
Antineoplásicos , Nanotubos , Humanos , Argila , Temperatura , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanotubos/química , Polímeros/química , Liberação Controlada de Fármacos
14.
Adv Mater ; 34(30): e2201353, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35485142

RESUMO

Lead halide perovskite nanocrystals are highly attractive for next-generation optoelectronics because they are easy to synthesize and offer great compositional and morphological tunability. However, the replacement of lead by tin for sustainability reasons is hampered by the unstable nature of Sn2+ oxidation state and by an insufficient understanding of the chemical processes involved in the synthesis. Here, an optimized synthetic route is demonstrated to obtain stable, tunable, and monodisperse CsSnI3 nanocrystals, exhibiting well-defined excitonic peaks. Similar to lead halide perovskites, these nanocrystals are prepared by combining a precursor mixture of SnI2 , oleylamine, and oleic acid, with a Cs-oleate precursor. Among the products, nanocrystals with 10 nm lateral size in the γ-orthorhombic phase prove to be the most stable. To achieve such stability, an excess of precursor SnI2 as well as substoichiometric Sn:ligand ratios are key. Structural, compositional, and optical investigations complemented by first-principle density functional theory calculations confirm that nanocrystal nucleation and growth follow the formation of (R-NH3 + )2 SnI4 nanosheets, with R = C18 H35 . Under specific synthetic conditions, stable mixtures of 3D nanocrystals CsSnI3 and 2D nanosheets (Ruddlesden-Popper (R-NH3 + )2 Csn -1 Snn I3 n +1 with n > 1) are obtained. These results set a path to exploiting the high potential of Sn halide perovskite nanocrystals for opto-electronic applications.

15.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616038

RESUMO

In this work, we report the green production of few-layer bio-Graphene (bG) through liquid exfoliation of graphite in the presence of bovine serum albumin. Microscopic characterization evaluated the quality of the produced nanomaterial, showing the presence of 3-4-layer graphene. Moreover, spectroscopic techniques also confirmed the quality of the resulted bG, as well as the presence of bovine serum albumin on the graphene sheets. Next, for the first time, bG was used as support for the simultaneous covalent co-immobilization of three enzymes, namely ß-glucosidase, glucose oxidase, and horseradish peroxidase. The three enzymes were efficiently co-immobilized on bG, demonstrating high immobilization yields and activity recoveries (up to 98.5 and 90%, respectively). Co-immobilization on bG led to an increase of apparent KM values and a decrease of apparent Vmax values, while the stability of the nanobiocatalysts prevailed compared to the free forms of the enzymes. Co-immobilized enzymes exhibited high reusability, preserving a significant part of their activity (up to 72%) after four successive catalytic cycles at 30 °C. Finally, the tri-enzymatic nanobiocatalytic system was applied in three-step cascade reactions, involving, as the first step, the hydrolysis of p-Nitrophenyl-ß-D-Glucopyranoside and cellobiose.

16.
Small Methods ; 5(12): e2100868, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928018

RESUMO

Perovskite oxides with dispersed nanoparticles on their surface are considered instrumental in energy conversion and catalytic processes. Redox exsolution is an alternative method to the conventional deposition techniques for directly growing well-dispersed and anchored nanoarchitectures from the oxide support through thermochemical or electrochemical reduction. Herein, a new method for such nanoparticle nucleation through the exposure of the host perovskite to plasma is shown. The applicability of this new method is demonstrated by performing catalytic tests for CO2 hydrogenation over Ni exsolved nanoparticles prepared by either plasma or conventional H2 reduction. Compared to the conventional thermochemical H2 reduction, there are plasma conditions that lead to the exsolution of a more than ten times higher Ni amount from a lanthanum titanate perovskite, which is similar to the reported values of the electrochemical method. Unlike the electrochemical method, however, plasma does not require the integration of the material in an electrochemical cell, and is thus applicable to a wide range of microstructures and physical forms. Additionally, when N2 plasma is employed, the nitrogen species are stripping out oxygen from the perovskite lattice, generating a key chemical intermediate, such as NO, rendering this technology even more appealing.

17.
Ind Eng Chem Res ; 60(44): 15999-16010, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34949902

RESUMO

This work reports initial results on the effect of low concentrations (ppm level) of a stabilizing agent (2,6-di-tert-butyl-4-methylphenol, BHT) present in an off-the-shelf solvent on the catalyst performance for the hydrogenolysis of γ-butyrolactone over Cu-ZnO-based catalysts. Tetrahydrofuran (THF) was employed as an alternative solvent in the hydrogenolysis of γ-butyrolactone. It was found that the Cu-ZnO catalyst performance using a reference solvent (1,4-dioxane) was good, meaning that the equilibrium conversion was achieved in 240 min, while a zero conversion was found when employing tetrahydrofuran. The deactivation was studied in more detail, arriving at the preliminary conclusion that one phenomenon seems to play a role: the poisoning effect of a solvent additive present at the ppm level (BHT) that appears to inhibit the reaction completely over a Cu-ZnO catalyst. The BHT effect was also visible over a commercial Cu-ZnO-MgO-Al2O3 catalyst but less severe than that over the Cu-ZnO catalyst. Hence, the commercial catalyst is more tolerant to the solvent additive, probably due to the higher surface area. The study illustrates the importance of solvent choice and purification for applications such as three-phase-catalyzed reactions to achieve optimal performance.

18.
Dalton Trans ; 50(42): 15062-15070, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610072

RESUMO

The great interest in aluminium nitride thin films has been attributed to their excellent dielectric, thermal and mechanical properties. Here we present the results of amorphous AlN films obtained by atomic layer deposition. We used trimethylaluminum and monomethylhydrazine as the precursors at a deposition temperature of 375-475 °C. The structural and mechanical properties and chemical composition of the synthesized films were investigated in detail by X-ray diffraction, X-ray photoelectron spectroscopy, electron and probe microscopy and nanoindentation. The obtained films were compact and continuous, exhibiting amorphous nature with homogeneous in-depth composition, at an oxygen content of as low as 4 at%. The mechanical properties were comparable to those of AlN films produced by other techniques.

19.
ACS Appl Mater Interfaces ; 13(24): 28843-28854, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34101421

RESUMO

This study reports on the ultralubricity of a high-temperature resilient nanocomposite WS2/a-C tribocoating. The coefficient of friction of this coating remains at around 0.02 independently of a thermal treatment up to ∼500 °C, as confirmed by high-temperature tribotests. Moreover, the coating annealed at 450 °C keeps exhibiting a similar ultralubricity when cooled back down to room temperature and tested there, implying a tribological self-adaptation over a broad temperature range. High-resolution TEM observations of the tribofilms on the wear track unveil that WS2 nanoplatelets form dynamically via atomic rearrangement and extend via unfaulting geometrical defects (bound by partial climb dislocations). The (002) basal planes of the WS2 nanoplatelets, reoriented parallel to the tribo-sliding direction, contribute to a sustainable ultralubricity. The declining triboperformance beyond 500 °C is associated with sulfur loss rather than the transformation of WS2 into inferior WO3 via oxidation as suggested earlier. This self-adaptive WS2/a-C tribocoating holds promise for a constant ultralubrication with excellent thermal performance.

20.
ACS Appl Nano Mater ; 4(3): 2333-2338, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33842855

RESUMO

Germanane (GeH), a graphane analogue, has attracted significant interest because of its optoelectronic properties; however, the environmental and biological effects of GeH have scarcely been investigated so far. Here we report a facile approach based on the Langmuir-Schaefer deposition to produce homogeneous and dense GeH monolayer films on various substrates. In view of possible applications and to extend the use of GeH to unexplored fields, we investigated its antibacterial activity for the first time and found that this promising 2D structure exhibits remarkable antibacterial activity against both Gram-negative and Gram-positive bacterial strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA