Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Artif Organs ; 47(2): 317-329, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36106378

RESUMO

BACKGROUND: Ex situliver machine perfusion at subnormothermic/normothermic temperature isincreasingly applied in the field of transplantation to store and evaluateorgans on the machine prior transplantation. Currently, various perfusionconcepts are in clinical and preclinical applications. Over the last 6 years ina multidisciplinary team, a novel blood based perfusion technology wasdeveloped to keep a liver alive and metabolically active outside of the bodyfor at least one week. METHODS: Within thismanuscript, we present and compare three scenarios (Group 1, 2 and 3) we werefacing during our research and development (R&D) process, mainly linked tothe measurement of free hemoglobin and lactate in the blood based perfusate. Apartfrom their proven value in liver viability assessment (ex situ), these twoparameters are also helpful in R&D of a long-term liver perfusion machine and moreover supportive in the biomedical engineering process. RESULTS: Group 1 ("good" liver on the perfusion machine) represents the best liver clearance capacity for lactate and free hemoglobin wehave observed. In contrast to Group 2 ("poor" liver on the perfusion machine), that has shown the worst clearance capacity for free hemoglobin. Astonishingly,also for Group 2, lactate is cleared till the first day of perfusion andafterwards, rising lactate values are detected due to the poor quality of theliver. These two perfusate parametersclearly highlight the impact of the organ quality/viability on the perfusion process. Whereas Group 3 is a perfusion utilizing a blood loop only (without a liver). CONCLUSION: Knowing the feasible ranges (upper- and lower bound) and the courseover time of free hemoglobin and lactate is helpful to evaluate the quality ofthe organ perfusion itself and the maturity of the developed perfusion device. Freehemoglobin in the perfusate is linked to the rate of hemolysis that indicates how optimizing (gentle blood handling, minimizing hemolysis) the perfusion machine actually is. Generally, a reduced lactate clearancecapacity can be an indication for technical problems linked to the blood supplyof the liver and therefore helps to monitor the perfusion experiments.Moreover, the possibility is given to compare, evaluate and optimize developed liverperfusion systems based on the given ranges for these two parameters. Otherresearch groups can compare/quantify their perfusate (blood) parameters withthe ones in this manuscript. The presented data, findings and recommendations willfinally support other researchers in developing their own perfusion machine ormodifying commercially availableperfusion devices according to their needs.


Assuntos
Hemólise , Transplante de Fígado , Humanos , Preservação de Órgãos , Fígado , Perfusão , Lactatos , Hemoglobinas
2.
Nat Biotechnol ; 40(11): 1610-1616, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35641829

RESUMO

Current organ preservation methods provide a narrow window (usually <12 hours) to assess, transport and implant donor grafts for human transplantation. Here we report the transplantation of a human liver discarded by all centers, which could be preserved for several days using ex situ normothermic machine perfusion. The transplanted liver exhibited normal function, with minimal reperfusion injury and the need for only a minimal immunosuppressive regimen. The patient rapidly recovered a normal quality of life without any signs of liver damage, such as rejection or injury to the bile ducts, according to a 1-year follow up. This inaugural clinical success opens new horizons in clinical research and promises an extended time window of up to 10 days for assessment of viability of donor organs as well as converting an urgent and highly demanding surgery into an elective procedure.


Assuntos
Transplante de Fígado , Qualidade de Vida , Humanos , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Perfusão/métodos , Fígado/cirurgia
3.
Artif Organs ; 46(2): 273-280, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34287985

RESUMO

Robust viability assessment of grafts during normothermic liver perfusion is a prerequisite for organ use. Coagulation parameters are used commonly for liver assessment in patients. However, they are not yet included in viability assessment during ex situ perfusion. In this study, we analysed coagulation parameters during one week ex situ perfusion at 34℃. Eight discarded human livers were perfused with blood-based, heparinised perfusate for one week; perfusions in a further four livers were terminated on day 4 due to massive ongoing cell death. Coagulation parameters were well below the physiologic range at perfusion start. Physiologic levels were achieved within the first two perfusion days for factor V (68.5 ± 35.5%), factor VII (83.5 ± 26.2%), fibrinogen (2.1 ± 0.4 g/L) and antithrombin (107 ± 26.5%) in the livers perfused for one week. Despite the increased production of coagulation factors, INR was detectable only at 24h of perfusion (2.1 ± 0.3) and prolonged thereafter (INR > 9). The prolongation of INR was related to the high heparin level in the perfusate (anti-FXa > 3 U/mL). Intriguingly, livers with ongoing massive cell death also disclosed synthesis of factor V and improved INR. In summary, perfused livers were able to produce coagulation factors at a physiological level ex situ. We propose that single coagulation factor analysis is more reliable for assessing the synthetic function of perfused livers as compared to INR when using a heparinised perfusate.


Assuntos
Fatores de Coagulação Sanguínea/biossíntese , Fígado/fisiopatologia , Preservação de Órgãos/efeitos adversos , Perfusão/efeitos adversos , Heparina/farmacologia , Humanos , Coeficiente Internacional Normatizado , Fígado/metabolismo , Fígado/cirurgia , Transplante de Fígado , Preservação de Órgãos/métodos , Perfusão/métodos
4.
Ann Surg ; 274(5): 836-842, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34334640

RESUMO

OBJECTIVE: The aim of this study was to maintain long-term full function and viability of partial livers perfused ex situ for sufficient duration to enable ex situ treatment, repair, and regeneration. BACKGROUND: Organ shortage remains the single most important factor limiting the success of transplantation. Autotransplantation in patients with nonresectable liver tumors is rarely feasible due to insufficient tumor-free remnant tissue. This limitation could be solved by the availability of long-term preservation of partial livers that enables functional regeneration and subsequent transplantation. METHODS: Partial swine livers were perfused with autologous blood after being procured from healthy pigs following 70% in-vivo resection, leaving only the right lateral lobe. Partial human livers were recovered from patients undergoing anatomic right or left hepatectomies and perfused with a blood based perfusate together with various medical additives. Assessment of physiologic function during perfusion was based on markers of hepatocyte, cholangiocyte, vascular and immune compartments, as well as histology. RESULTS: Following the development phase with partial swine livers, 21 partial human livers (14 right and 7 left hemi-livers) were perfused, eventually reaching the targeted perfusion duration of 1 week with the final protocol. These partial livers disclosed a stable perfusion with normal hepatic function including bile production (5-10 mL/h), lactate clearance, and maintenance of energy exhibited by normal of adenosine triphosphate (ATP) and glycogen levels, and preserved liver architecture for up to 1 week. CONCLUSION: This pioneering research presents the inaugural evidence for long-term machine perfusion of partial livers and provides a pathway for innovative and relevant clinical applications to increase the availability of organs and provide novel approaches in hepatic oncology.


Assuntos
Hepatopatias/cirurgia , Regeneração Hepática/fisiologia , Transplante de Fígado/métodos , Fígado/fisiopatologia , Preservação de Órgãos/métodos , Perfusão/métodos , Animais , Modelos Animais de Doenças , Seguimentos , Humanos , Fígado/cirurgia , Hepatopatias/fisiopatologia , Estudos Retrospectivos , Suínos , Fatores de Tempo
5.
Transpl Infect Dis ; 23(4): e13623, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33887094

RESUMO

INTRODUCTION: The use of normothermic liver machine perfusion to repair injured grafts ex situ is an emerging topic of clinical importance. However, a major concern is the possibility of microbial contamination in the absence of a fully functional immune system. Here, we report a standardized approach to maintain sterility during normothermic liver machine perfusion of porcine livers for one week. METHODS: Porcine livers (n = 42) were procured and perfused with blood at 34°C following aseptic technique and standard operating procedures. The antimicrobial prophylaxis was adapted and improved in a step-wise manner taking into account the pathogens that were detected during the development phase. Piperacillin-Tazobactam was applied as a single dose initially and modified to continuous application in the final protocol. In addition, the perfusion machine was improved to recapitulate partially the host's defense system. The final protocol was tested for infection prevention during one week of perfusion. RESULTS: During the development phase, microbial contamination occurred in 27 out of 39 (69%) livers with a mean occurrence of growth on 4 ± 1.6 perfusion days. The recovered microorganisms suggested an exogenous source of microbial contamination. The antimicrobial agents (piperacillin/tazobactam) could be maintained above the targeted minimal inhibitory concentration (8-16 mg/L) only with continuous application. In addition to continuous application of piperacillin/tazobactam, partial recapitulation of the host immune system ex situ accompanied by strict preventive measures for contact and air contamination maintained sterility during one week of perfusion. CONCLUSION: The work demonstrates feasibility of sterility maintenance for one week during ex situ normothermic liver perfusion.


Assuntos
Transplante de Fígado , Animais , Humanos , Fígado , Perfusão , Complicações Pós-Operatórias , Suínos
6.
Surgery ; 169(4): 894-902, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33422346

RESUMO

BACKGROUND: Long-term ex situ liver perfusion may rescue injured grafts. Little is known about bile flow during long-term perfusion. We report the development of a bile stimulation protocol and motivate bile flow as a viability marker during long-term ex situ liver perfusion. METHODS: Porcine and human livers were perfused with blood at close to physiologic conditions. Our perfusion protocol was established during phase 1 with porcine livers (n = 23). Taurocholic acid was applied to stimulate bile flow. The addition of piperacillin-tazobactam (tazobac) and methylprednisolone was modified from daily bolus to controlled continuous application. We adapted the protocol to human livers (n = 12) during phase 2. Taurocholic acid was replaced with medical grade ursodeoxycholic acid. RESULTS: Phase 2: Despite administering taurocholic acid, bile flow declined from 29.3 ± 6.5 to 9.3 ± 1.4 mL/h (P < .001). Shortly after bolus of tazobac/methylprednisolone, bile flow recovered to 39.0 ± 9.7 mL/h with a decrease of solid bile components. This implied bile salt independent bile flow stimulation by tazobac/methylprednisolone. Phase 2: Ursodeoxycholic acid was shown to stimulate bile flow ex situ in human livers. Eight livers were perfused successfully for 1 week with continuous bile flow. The other 4 livers demonstrated progressive cell death, of which only 1 exhibited bile flow. CONCLUSION: A lack of bile flow stimulation leads to a decline in bile flow and is not necessarily a sign of deterioration in liver function. Proper administration of stimulators can induce constant bile flow during ex situ liver perfusion for up to 1 week. Medical grade ursodeoxycholic acid is a suitable replacement for nonmedical grade taurocholic acid. The presence of bile flow alone is not sufficient to assess liver viability.


Assuntos
Bile/metabolismo , Fígado/metabolismo , Perfusão , Animais , Bile/química , Biomarcadores , Biópsia , Feminino , Sobrevivência de Enxerto , Humanos , Técnicas In Vitro , Testes de Função Hepática , Transplante de Fígado , Modelos Animais , Perfusão/métodos , Suínos
7.
IEEE Trans Biomed Eng ; 68(4): 1399-1408, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104505

RESUMO

OBJECTIVE: With the growing demand for livers in the field of transplantation, interest in normothermic ex situ machine perfusion (NMP) has increased in recent years. This may open the door for novel therapeutic interventions such as repair of suboptimal grafts. For successful long-term NMP of livers, blood glucose (BG) levels need to be maintained in a close to physiological range. METHODS: We present an "automated insulin delivery" (AID) system integrated into an NMP system, which automatically adjusts insulin infusion rates based on continuous BG measurements in a closed loop manner during ex situ pig and human liver perfusion. An online glucose sensor for continuous glucose monitoring was integrated and evaluated in blood. A model based and a proportional controller were implemented and compared in their ability to maintain BG within the physiological range. RESULTS: The continuous glucose sensor is capable of measuring BG directly in human and pig blood for multiple days with an average error of 0.6 mmol/L. There was no significant difference in the performance of the two controllers in terms of their ability to keep BG in the physiological range. With the integrated AID, BG was controlled within the physiological range on average in 80% and 76% of the perfusion time for human and pig livers, respectively. CONCLUSION: The presented work offers a method and shows the feasibility to maintain BG in the physiological range for multiple (up to ten) days during ex situ liver perfusion with the help of an automated AID. SIGNIFICANCE: Maintaining BG within the physiological range is required to enable long-term ex situ liver perfusion.


Assuntos
Insulina , Transplante de Fígado , Animais , Glicemia , Automonitorização da Glicemia , Controle Glicêmico , Fígado , Preservação de Órgãos , Perfusão , Suínos
8.
Sci Rep ; 10(1): 20966, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262362

RESUMO

Long-term perfusion of liver grafts outside of the body may enable repair of poor-quality livers that are currently declined for transplantation, mitigating the global shortage of donor livers. In current ex vivo liver perfusion protocols, hyperoxic blood (arterial blood) is commonly delivered in the portal vein (PV). We perfused porcine livers for one week and investigated the effect of and mechanisms behind hyperoxia in the PV on hepatic arterial resistance. Applying PV hyperoxia in porcine livers (n = 5, arterial PV group), we observed an increased need for vasodilator Nitroprussiat (285 ± 162 ml/week) to maintain the reference hepatic artery flow of 0.25 l/min during ex vivo perfusion. With physiologic oxygenation (venous blood) in the PV the need for vasodilator could be reduced to 41 ± 34 ml/week (p = 0.011; n = 5, venous PV group). This phenomenon has not been reported previously, owing to the fact that such experiments are not feasible practically in vivo. We investigated the mechanism of the variation in HA resistance in response to blood oxygen saturation with a focus on the release of vasoactive substances, such as Endothelin 1 (ET-1) and nitric oxide (NO), at the protein and mRNA levels. However, no difference was found between groups for ET-1 and NO release. We propose direct oxygen sensing of endothelial cells and/or increased NO break down rate with hyperoxia as possible explanations for enhanced HA resistance.


Assuntos
Artéria Hepática/patologia , Artéria Hepática/fisiopatologia , Hiperóxia/patologia , Hiperóxia/fisiopatologia , Veia Porta/patologia , Veia Porta/fisiopatologia , Vasoconstrição , Animais , Biomarcadores/metabolismo , Hemodinâmica , Fígado/irrigação sanguínea , Fígado/patologia , Fígado/fisiopatologia , Oxigênio/administração & dosagem , Perfusão , Suínos , Resistência Vascular
10.
ACS Nano ; 14(10): 12895-12904, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32806052

RESUMO

Liquid transport (continuous or segmented) in microfluidic platforms typically requires pumping devices or external fields working collaboratively with special fluid properties to enable fluid motion. Natural liquid adhesion on surfaces deters motion and promotes the possibility of liquid or surface contamination. Despite progress, significant advancements are needed before devices for passive liquid propulsion, without the input of external energy and unwanted contamination, become a reality in applications. Here we present an unexplored and facile approach based on the Laplace pressure imbalance, manifesting itself through targeted track texturing, driving passively droplet motion, while maintaining the limited contact of the Cassie-Baxter state on superhydrophobic surfaces. The track topography resembles out-of-plane, backgammon-board, slowly converging microridges decorated with nanotexturing. This design naturally deforms asymmetrically the menisci formed at the bottom of a droplet contacting such tracks and causes a Laplace pressure imbalance that drives droplet motion. We investigate this effect over a range of opening track angles and develop a model to explain and quantify the underlying mechanism of droplet self-propulsion. We further implement the developed topography for applications relevant to microfluidic platform functionalities. We demonstrate control of the rebound angle of vertically impacting droplets, achieve horizontal self-transport to distances up to 65 times the droplet diameter, show significant uphill motion against gravity, and illustrate a self-driven droplet-merging process.

11.
Nat Biotechnol ; 38(2): 189-198, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932726

RESUMO

The ability to preserve metabolically active livers ex vivo for 1 week or more could allow repair of poor-quality livers that would otherwise be declined for transplantation. Current approaches for normothermic perfusion can preserve human livers for only 24 h. Here we report a liver perfusion machine that integrates multiple core physiological functions, including automated management of glucose levels and oxygenation, waste-product removal and hematocrit control. We developed the machine in a stepwise fashion using pig livers. Study of multiple ex vivo parameters and early phase reperfusion in vivo demonstrated the viability of pig livers perfused for 1 week without the need for additional blood products or perfusate exchange. We tested the approach on ten injured human livers that had been declined for transplantation by all European centers. After a 7-d perfusion, six of the human livers showed preserved function as indicated by bile production, synthesis of coagulation factors, maintained cellular energy (ATP) and intact liver structure.


Assuntos
Fígado/lesões , Perfusão/instrumentação , Preservação Biológica , Trifosfato de Adenosina/metabolismo , Alarminas/metabolismo , Animais , Biomarcadores/metabolismo , Eletrólitos/metabolismo , Glucose/metabolismo , Hemodinâmica , Hemólise , Humanos , Fígado/fisiopatologia , Oxigênio/metabolismo , Consumo de Oxigênio , Veia Porta/metabolismo , Reperfusão , Suínos
12.
Langmuir ; 35(14): 4876-4885, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30884239

RESUMO

It is known that electrified droplets deform and may become unstable when the electric field they are exposed to reaches a certain critical value. These instabilities are accompanied by electric discharges due to the local enhancement of the electric field caused by the deformed droplets. Here we report and highlight an interesting aspect of the behavior of unstable water droplets and discharge generation: by implementing wettability engineering, we can manipulate these discharges. We demonstrate that wettability strongly influences the shape of a droplet that is exposed to an electric field. The difference in shape is directly related to differences in the critical value of the applied electric field at which inception of discharge occurs. Using theoretical models, we can predict and sufficiently support our observations. Thus, by tailoring the wettability of the surface, we can control droplet's behavior from expediting the discharge inception to completely restricting it.

13.
Biotechnol Biofuels ; 12: 37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828382

RESUMO

BACKGROUND:  Lignocellulosic biomass is considered as a potential source for sustainable biofuels. In the conversion process, a pretreatment step is necessary in order to overcome the biomass recalcitrance and allow for sufficient fermentable sugar yields in enzymatic hydrolysis. Steam explosion is a well known pretreatment method working without additional chemicals and allowing for efficient particle size reduction. However, it is not effective for the pretreatment of softwood and the harsh conditions necessary to achieve a highly digestible cellulose fraction lead to the partial degradation of the hemicellulosic sugars. Previous studies showed that the autohydrolysis pretreatreatment of softwood can benefit from the addition of 2-naphthol. This carbocation scavenger prevents lignin repolymerisation leading to an enhanced glucose yield in the subsequent enzymatic hydrolysis. RESULTS:  In order to prevent the degradation of the hemicellulose, we investigated in this study a two-stage 2-naphthol steam explosion pretreatment. In the first stage, spruce wood is pretreated at a severity which is optimal for the autocatalytic hydrolysis of the hemicellulose. The hydrolyzate containing the solubilized sugars is withdrawn from the reactor and the remaining solids are pretreated with different amounts of 2-naphthol in a second stage at a severity that allows for high glucose yields in enzymatic hydrolysis. The pretreated spruce was subjected to enzymatic hydrolysis and to simultaneous saccharification and fermentation (SSF). In the first stage, the maximal yield of hemicellulosic sugars was 47.5% at a pretreatment severity of log R 0 = 3.75 at 180 °C. In the second stage, a 2-naphthol dosage of 0.205 mol/mol lignin C9-unit increased the ethanol yield in SSF with a cellulose loading of 1% using the whole second stage pretreatment slurry by 17% from 73.6% for the control without 2-naphthol to 90.4%. At a higher solid loading corresponding to 5% w/w cellulose, the yields decreased due to higher concentrations of residual 2-naphthol in the biomass and the pretreatment liquor, but also due to higher concentrations of potential inhibitors like HMF, furfural and acetic acid. Experiments with washed solids, vacuum filtered solids and the whole slurry showed that residual 2-naphthol can inhibit the fermentation as a single inhibitor but also synergistically together with HMF, furfural and acetic acid. CONCLUSIONS:  This work shows that a two-stage pretreatment greatly enhances the recovery of hemicellulosic sugars from spruce wood. The presence of 2-naphthol in the second pretreatment stage can enhance the ethanol yield in SSF of steam explosion pretreated softwood at low cellulose concentrations of 1% w/w. However, with higher solid loadings of 5% w/w cellulose, the ethanol yields were in general lower due to the solid effect and a synergistic inhibition of HMF, furfural, acetic acid with residual 2-naphthol. The concentration of residual 2-naphthol tolerated by the yeast decreased with increasing concentrations of HMF, furfural, and acetic acid.

15.
Transpl Int ; 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29928775

RESUMO

Liver machine perfusion (MP) at normothermic temperature (NMP) is a promising way to preserve and evaluate extended criteria donor livers. Currently, no consensus exists in methodology and perfusion protocols. Here, the authors performed a systematic literature search to identify human and porcine studies reporting on liver NMP with red blood cells. A qualitative synthesis was performed concerning technical aspects of MP, fluid composition, gas supply, and liver positioning. Thirty-seven publications including 11 human and 26 porcine studies were considered for qualitative synthesis. Control mode, pressure, flow, perfusate additives, and targeted blood gas parameters varied across human as well as porcine studies. For future analyses, it is advisable to report flow adjusted to liver weight and exact pressure parameters including mean, systolic, and diastolic pressure. Parenteral nutrition and insulin addition was common. Parenteral nutrition included amino acids and/or glucose without lipids. Taurocholic acid derivatives were used as bile flow promoters. However, short-term human NMP without taurocholic acid derivatives seems to be possible. This finding is relevant due to the lack of clinical grade bile salts. Near physiological oxygen tension in the perfusate is doable by adjusting gas flows, while blood gas parameters regulation needs more detailed description.

16.
Rev Sci Instrum ; 88(11): 114103, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29195391

RESUMO

The operando study of CO2 hydrogenation is fundamental for a more rational optimisation of heterogeneous catalyst and reactor designs. To further complement the established efficiency of microreactors in reaction screening and bridge the operating and optical gaps, a micro-view-cell is presented for Raman microscopy at extreme conditions with minimum flow interference for genuine reaction analysis. Based on a flat sapphire window unit sealed in a plug flow-type enclosure holding the sample, the cell features unique 14 mm working distance and 0.36 numerical aperture and resists 400 °C and 500 bars. The use of the cell as an in situ tool for fast process monitoring and surface catalyst characterisation is demonstrated with phase behaviour and chemical analysis of the methanol synthesis over a commercial Cu/ZnO/Al2O3 catalyst.

17.
Faraday Discuss ; 202: 269-280, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28660975

RESUMO

For the production of second generation biofuels from lignocellulosic biomass, pretreatment of the biomass feedstock is necessary to overcome its recalcitrance in order to gain fermentable sugars. Due to many reasons, steam-explosion pretreatment is currently the most commonly used pretreatment method for lignocellulosic biomass on a commercial scale [S. Brethauer and M. H. Studer, CHIMIA, 2015, 69, 572-581]. In contrast to others, we showed that the explosive decompression at the end of this pretreatment step can have a positive influence on the enzymatic digestibility of softwood, especially in combination with high enzyme dosages [T. Pielhop, et al., Biotechnology for Biofuels, 2016, 9, 152]. In this study, the influence of the explosive decompression on the enzymatic digestibility of hardwood and herbaceous plants was systematically studied. Beech and corn stover were pretreated under different pretreatment conditions and enzymatically hydrolysed with different enzyme dosages. The maximum enhancement of the digestibility of corn stover was 16.53% after a 2.5 min pretreatment step at 15 barg steam pressure. For beech, a maximum relative enhancement of 58.29% after a 10 min pretreatment step at 15 barg steam pressure could be reached. With this, we show that the explosive decompression can also enhance the enzymatic cellulose digestibility of hardwood and herbaceous plants.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Biomassa , Celulase/química , Celulose/química , Descompressão Explosiva , Tamanho da Partícula , Vapor , Propriedades de Superfície
18.
ChemSusChem ; 10(6): 1166-1174, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-27981806

RESUMO

Condensation promotes CO2 hydrogenation to CH3 OH beyond equilibrium through in situ product separation. Although primordial for catalyst and reactor design, triggering conditions as well as the impact on sub-equilibrium reaction behaviour remain unclear. Herein we used an in-house designed micro-view-cell to gain chemical and physical insights into reaction and phase behaviour under high-pressure conditions over a commercial Cu/ZnO/Al2 O3 catalyst. Raman microscopy and video monitoring, combined with online gas chromatography analysis, allowed the complete characterisation of the reaction bulk up to 450 bar (1 bar=0.1 MPa) and 350 °C. Dew points of typical effluent streams related to a parametric study suggest that the improving reaction performance and reverting selectivities observed from 230 °C strongly correlate with (i) a regime transition from kinetic to thermodynamic, and (ii) a phase transition from a single supercritical to a biphasic reaction mixture. Our results advance a rationale behind transitioning CH3 OH selectivities for an improved understanding of CO2 hydrogenation under high pressure.


Assuntos
Dióxido de Carbono/química , Metanol/química , Óxido de Alumínio/química , Catálise , Cobre/química , Hidrogenação , Temperatura de Transição , Zinco/química
19.
Int J Food Microbiol ; 238: 222-232, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27668570

RESUMO

Fresh produce is frequently contaminated by microorganisms, which may lead to spoilage or even pose a threat to human health. In particular sprouts are considered to be among the most risky foods sold at retail since they are grown in an environment practically ideal for growth of bacteria and usually consumed raw. Because heat treatment has a detrimental effect on the germination abilities of sprout seeds, alternative treatment technologies need to be developed for microbial inactivation purposes. In this study, non-thermal plasma decontamination of sprout seeds is evaluated as a promising option to enhance food safety while maintaining the seed germination capabilities. In detail, investigations focus on understanding the efficiency of non-thermal plasma inactivation of microorganisms as influenced by the type of microbial contamination, substrate surface properties and moisture content, as well as variations in the power input to the plasma device. To evaluate the impact of these parameters, we studied the reduction of native microbiota or artificially applied E. coli on alfalfa, onion, radish and cress seeds exposed to non-thermal plasma in an atmospheric pressure pulsed dielectric barrier discharge streamed with argon. Plasma treatment resulted in a maximum reduction of 3.4 logarithmic units for E. coli on cress seeds. A major challenge in plasma decontamination of granular food products turned out to be the complex surface topology, where the rough surface with cracks and crevices can shield microorganisms from plasma-generated reactive species, thus reducing the treatment efficiency. However, improvement of the inactivation efficiency was possible by optimizing substrate characteristics such as the moisture level and by tuning the power supply settings (voltage, frequency) to increase the production of reactive species. While the germination ability of alfalfa seeds was considerably decreased by harsh plasma treatment, enhanced germination was observed under mild conditions. In conclusion, the results from this study indicate that cold plasma treatment represents a promising technology for inactivation of bacteria on seeds used for sprout production while preserving their germination properties.


Assuntos
Conservação de Alimentos/métodos , Gases em Plasma/farmacologia , Raphanus/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Conservação de Alimentos/instrumentação , Germinação , Humanos , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Raphanus/microbiologia , Sementes/microbiologia
20.
ChemSusChem ; 1(8-9): 763-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18688829

RESUMO

A novel approach has been developed in order to use Kraft lignin as a renewable resource for the production of chemicals. The concept is based on the use of polyoxometalates as reversible oxidants and on the use of radical scavengers, which prevent lignin fragments from repolymerizing. The oxidation of Kraft lignin, which is a potential source of functionalized phenols, by H3PMo12O40 in water yields a relatively small amount of monomeric species detected by GC-MS. The addition of methanol to the reaction resulted in an increase in the yield of monomeric products by a factor of up to 15. Vanillin and methyl vanillate are the main products obtained, in a maximum yield of 5 wt % based on dry Kraft lignin. Methanol plays a decisive role in the prevention of repolymerization by reducing lignin-lignin condensation reactions. Furthermore, it is proposed that methanol generates small amounts of .CH3 and CH3O. radicals through the acid-catalyzed formation of dimethyl ether which couple with lignin fragments.


Assuntos
Álcoois/química , Lignina/química , Polímeros/química , Compostos de Tungstênio/química , Água/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA