Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Comput Assist Tomogr ; 48(2): 251-256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38013203

RESUMO

PURPOSE: This study aimed to compare the image quality of portal venous phase-derived virtual noncontrast (VNC) images from photon-counting computed tomography (PCCT) with energy-integrating dual-energy computed tomography (EI-DECT) in the same patient using quantitative and qualitative analyses. METHODS: Consecutive patients retrospectively identified with available portal venous phase-derived VNC images from both PCCT and EI-DECT were included. Patients without available VNC in picture archiving and communication system in PCCT or prior EI-DECT and non-portal venous phase acquisitions were excluded. Three fellowship-trained radiologists blinded to VNC source qualitatively assessed VNC images on a 5-point scale for overall image quality, image noise, small structure delineation, noise texture, artifacts, and degree of iodine removal. Quantitative assessment used region-of-interest measurements within the aorta at 4 standard locations, both psoas muscles, both renal cortices, spleen, retroperitoneal fat, and inferior vena cava. Attenuation (Hounsfield unit), quantitative noise (Hounsfield unit SD), contrast-to-noise ratio (CNR) (CNR vascular , CNR kidney , CNR spleen , CNR fat ), signal-to-noise ratio (SNR) (SNR vascular , SNR kidney , SNR spleen , SNR fat ), and radiation dose were compared between PCCT and EI-DECT with the Wilcoxon signed rank test. A P < 0.05 indicated statistical significance. RESULTS: A total of 74 patients (27 men; mean ± SD age, 63 ± 13 years) were included. Computed tomography dose index volumes for PCCT and EI-DECT were 9.2 ± 3.5 mGy and 9.4 ± 9.0 mGy, respectively ( P = 0.06). Qualitatively, PCCT VNC images had better overall image quality, image noise, small structure delineation, noise texture, and fewer artifacts (all P < 0.00001). Virtual noncontrast images from PCCT had lower attenuation (all P < 0.05), noise ( P = 0.006), and higher CNR ( P < 0.0001-0.04). Contrast-enhanced structures had lower SNR on PCCT ( P = 0.001, 0.002), reflecting greater contrast removal. The SNRfat (nonenhancing) was higher for PCCT than EI-DECT ( P < 0.00001). CONCLUSIONS: Virtual noncontrast images from PCCT had improved image quality, lower noise, improved CNR and SNR compared with those derived from EI-DECT.


Assuntos
Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Tomografia Computadorizada por Raios X , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Razão Sinal-Ruído , Aorta , Rim , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos
2.
Nat Commun ; 14(1): 7071, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923771

RESUMO

Temporal control of protein levels in cells and living animals can be used to improve our understanding of protein function. In addition, control of engineered proteins could be used in therapeutic applications. PRoteolysis-TArgeting Chimeras (PROTACs) have emerged as a small-molecule-driven strategy to achieve rapid, post-translational regulation of protein abundance via recruitment of an E3 ligase to the target protein of interest. Here, we develop several PROTAC molecules by covalently linking the antibiotic trimethoprim (TMP) to pomalidomide, a ligand for the E3 ligase, Cereblon. These molecules induce degradation of proteins of interest (POIs) genetically fused to a small protein domain, E. coli dihydrofolate reductase (eDHFR), the molecular target of TMP. We show that various eDHFR-tagged proteins can be robustly degraded to 95% of maximum expression with PROTAC molecule 7c. Moreover, TMP-based PROTACs minimally affect the expression of immunomodulatory imide drug (IMiD)-sensitive neosubstrates using proteomic and biochemical assays. Finally, we show multiplexed regulation with another known degron-PROTAC pair, as well as reversible protein regulation in a rodent model of metastatic cancer, demonstrating the formidable strength of this system. Altogether, TMP PROTACs are a robust approach for selective and reversible degradation of eDHFR-tagged proteins in vitro and in vivo.


Assuntos
Proteínas de Escherichia coli , Tetra-Hidrofolato Desidrogenase , Animais , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Quimera de Direcionamento de Proteólise , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Trimetoprima/farmacologia , Proteômica , Ubiquitina-Proteína Ligases/metabolismo , Proteólise
3.
J Clin Invest ; 132(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36106638

RESUMO

BACKGROUNDSeveral molecular imaging strategies can identify bacterial infections in humans. PET affords the potential for sensitive infection detection deep within the body. Among PET-based approaches, antibiotic-based radiotracers, which often target key bacterial-specific enzymes, have considerable promise. One question for antibiotic radiotracers is whether antimicrobial resistance (AMR) reduces specific accumulation within bacteria, diminishing the predictive value of the diagnostic test.METHODSUsing a PET radiotracer based on the antibiotic trimethoprim (TMP), [11C]-TMP, we performed in vitro uptake studies in susceptible and drug-resistant bacterial strains and whole-genome sequencing (WGS) in selected strains to identify TMP resistance mechanisms. Next, we queried the NCBI database of annotated bacterial genomes for WT and resistant dihydrofolate reductase (DHFR) genes. Finally, we initiated a first-in-human protocol of [11C]-TMP in patients infected with both TMP-sensitive and TMP-resistant organisms to demonstrate the clinical feasibility of the tool.RESULTSWe observed robust [11C]-TMP uptake in our panel of TMP-sensitive and -resistant bacteria, noting relatively variable and decreased uptake in a few strains of P. aeruginosa and E. coli. WGS showed that the vast majority of clinically relevant bacteria harbor a WT copy of DHFR, targetable by [11C]-TMP, and that despite the AMR, these strains should be "imageable." Clinical imaging of patients with [11C]-TMP demonstrated focal radiotracer uptake in areas of infectious lesions.CONCLUSIONThis work highlights an approach to imaging bacterial infection in patients, which could affect our understanding of bacterial pathogenesis as well as our ability to better diagnose infections and monitor response to therapy.TRIAL REGISTRATIONClinicalTrials.gov NCT03424525.FUNDINGInstitute for Translational Medicine and Therapeutics, Burroughs Wellcome Fund, NIH Office of the Director Early Independence Award (DP5-OD26386), and University of Pennsylvania NIH T32 Radiology Research Training Grant (5T32EB004311-12).


Assuntos
Infecções Bacterianas , Trimetoprima , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/diagnóstico por imagem , Infecções Bacterianas/tratamento farmacológico , Radioisótopos de Carbono , Escherichia coli , Humanos , Trimetoprima/farmacologia , Trimetoprima/uso terapêutico
4.
Mol Imaging Biol ; 23(6): 818-826, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34231105

RESUMO

PURPOSE: 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) is a well-established imaging modality to assess responses in patients with B-cell neoplasms. However, there is limited information about the utility of FDG PET/CT after chimeric antigen receptor T-cell (CART) therapies for large B-cell lymphomas. In this retrospective analysis, we aimed to evaluate how FDG PET/CT performs in patients receiving commercially available anti-CD19 CART therapies for relapsed/refractory (r/r) large B-cell lymphomas. In addition, we examined the time to repeat scan and the rate of pseudoprogression within this population. Lastly, the rates of radiographic response to CART therapy using FDG PET/CT are reported. PROCEDURES: The pre-treatment and post-treatment scans were analyzed from a selected cohort of 43 patients from a single institution. Patients were stratified by diagnosis of either a first occurrence of diffuse large B-cell lymphoma: de novo diffuse large B-cell lymphoma (DLBCL); or a transformed diffuse large B-cell lymphoma arising from indolent non-Hodgkin lymphoma (t-iNHL). RESULTS: More patients received CART therapy for DLBCL than t-iNHL (65 % vs 35 %). FDG PET/CT had a 99 % sensitivity and 100 % specificity for detecting recurrent disease in this group. The median time to initial response assessment was 86 days (IQR 79-91; full range 24-146) after infusion. There were no biopsy-proven cases of pseudoprogression identified. In this selected group of patients, the overall response rate by Lugano 2014 criteria was 56 %. All patients with a partial response (N = 6) eventually progressed despite additional therapy. CONCLUSIONS: Due to its excellent test characteristics and ability to detect asymptomatic disease, routine surveillance with PET/CT at 3 months after CART infusion is supported by our data. Earlier PET/CT may be of value in select situations as we did not find any cases of pseudoprogression.


Assuntos
Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Fluordesoxiglucose F18 , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos
5.
ACS Chem Biol ; 16(1): 52-57, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33351606

RESUMO

Cell-cell interactions and communication are crucial to the proper function of complex mammalian physiology including neurocognitive and immune system functions. While many tools are available for observing and perturbing intracellular processes, relatively few exist to probe intercellular processes. Current techniques for studying interactions often rely on direct protein contact, and few can manipulate diverse, functional outputs with tunable protein expression. To address these limitations, we have developed a small-molecule approach based on a trimethoprim prodrug-enzyme pair capable of reporting the presence of two different engineered cell populations with programmable protein outputs. The approach relies on bacterial nitroreductase enzyme catalysis, which is orthogonal to normal mammalian biology, and diffusion of trimethoprim from "activator" cells to "receiver" cells. We test this strategy, which can theoretically regulate many different types of proteins, using biochemical and in vitro culture assays with optical and cytokine protein readouts. This describes the first small-molecule approach capable of detecting and controlling engineered cell-cell outputs, and we anticipate future applications that are especially relevant to the field of immuno-oncology.


Assuntos
Engenharia Celular , Proteínas/química , Animais , Comunicação Celular , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Luciferases de Vaga-Lume/química , Pró-Fármacos/química , Bibliotecas de Moléculas Pequenas/química , Trimetoprima/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA