Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
bioRxiv ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38654820

RESUMO

The success of chimeric antigen receptor (CAR) T cells in blood cancers has intensified efforts to develop CAR T therapies for solid cancers. In the solid tumor microenvironment, CAR T cell trafficking and suppression of cytotoxic killing represent limiting factors for therapeutic efficacy. Here, we present a microwell platform to study CAR T cell interactions with 3D tumor spheroids and determine predictors of anti-tumor CAR T cell function. To precisely control antigen sensing by CAR T cells, we utilized a switchable adaptor CAR system, that instead of directly binding to an antigen of interest, covalently attaches to co-administered antibody adaptors that mediate tumor antigen recognition. Following addition of an anti-HER2 adaptor antibody, primary human CAR T cells exhibited higher infiltration and clustering compared to the no adaptor control. By tracking CAR T cell killing at the individual spheroid level, we showed the suppressive effects of spheroid size and identified the initial CAR T cell : spheroid area ratio as a predictor of cytotoxicity. Spatiotemporal analysis revealed lower CAR T cell numbers and cytotoxicity in the spheroid core compared to the periphery. Finally, increasing CAR T cell seeding density, resulted in higher CAR T cell infiltration and cancer cell elimination in the spheroid core. Our findings provide new quantitative insights into CAR T cell-mediated killing of HER2+ breast tumor cells. Given the miniaturized nature and live imaging capabilities, our microfabricated system holds promise for discovering cell-cell interaction mechanisms that orchestrate antitumor CAR T cell functions and screening cellular immunotherapies in 3D tumor models.

2.
ACS Synth Biol ; 12(10): 2996-3007, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37791909

RESUMO

As living drugs, engineered T cell therapies are revolutionizing disease treatment with their unique functional capabilities. However, they suffer from limitations of potentially unpredictable behavior, toxicities, and nontraditional pharmacokinetics. Engineering conditional control mechanisms responsive to tractable stimuli such as small molecules or light is thus highly desirable. We and others previously developed "universal" chimeric antigen receptors (CARs) that interact with coadministered antibody adaptors to direct target cell killing and T cell activation. Universal CARs are of high therapeutic interest due to their ability to simultaneously target multiple antigens on the same disease or different diseases by combining with adaptors to different antigens. Here, we further enhance the programmability and potential safety of universal CAR T cells by engineering OFF-switch adaptors that can conditionally control CAR activity, including T cell activation, target cell lysis, and transgene expression, in response to a small molecule or light stimulus. Moreover, in adaptor combination assays, OFF-switch adaptors were capable of orthogonal conditional targeting of multiple antigens simultaneously, following Boolean logic. OFF-switch adaptors represent a robust new approach for the precision targeting of universal CAR T cells with potential for enhanced safety.


Assuntos
Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Antígenos , Ativação Linfocitária , Linfócitos T
3.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292935

RESUMO

As living drugs, engineered T cell therapies are revolutionizing disease treatment with their unique functional capabilities. However, they suffer from limitations of potentially unpredictable behavior, toxicities, and non-traditional pharmacokinetics. Engineering conditional control mechanisms responsive to tractable stimuli such as small molecules or light is thus highly desirable. We and others previously developed "universal" chimeric antigen receptors (CARs) that interact with co-administered antibody adaptors to direct target cell killing and T cell activation. Universal CARs are of high therapeutic interest due to their ability to simultaneously target multiple antigens on the same disease or different diseases by combining with adaptors to different antigens. Here, we further enhance the programmability and potential safety of universal CAR T cells by engineering OFF-switch adaptors that can conditionally control CAR activity, including T cell activation, target cell lysis, and transgene expression, in response to a small molecule or light stimulus. Moreover, in adaptor combination assays, OFF-switch adaptors were capable of orthogonal conditional targeting of multiple antigens simultaneously following Boolean logic. OFF-switch adaptors represent a robust new approach for precision targeting of universal CAR T cells with potential for enhanced safety.

4.
Nat Commun ; 14(1): 2463, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160880

RESUMO

Chimeric antigen receptors (CARs) and synthetic Notch (synNotch) receptors are engineered cell-surface receptors that sense a target antigen and respond by activating T cell receptor signaling or a customized gene program, respectively. Here, to expand the targeting capabilities of these receptors, we develop "universal" receptor systems for which receptor specificity can be directed post-translationally via covalent attachment of a co-administered antibody bearing a benzylguanine (BG) motif. A SNAPtag self-labeling enzyme is genetically fused to the receptor and reacts with BG-conjugated antibodies for covalent assembly, programming antigen recognition. We demonstrate that activation of SNAP-CAR and SNAP-synNotch receptors can be successfully targeted by clinically relevant BG-conjugated antibodies, including anti-tumor activity of SNAP-CAR T cells in vivo in a human tumor xenograft mouse model. Finally, we develop a mathematical model to better define the parameters affecting universal receptor signaling. SNAP receptors provide a powerful strategy to post-translationally reprogram the targeting specificity of engineered cells.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Anticorpos , Modelos Animais de Doenças , Xenoenxertos , Transplante Heterólogo
5.
Front Immunol ; 14: 1043603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138877

RESUMO

Background: Phosphorylation of diacylglycerol by diacylglycerol-kinases represents a major inhibitory event constraining T cell activation upon antigen engagement. Efficient TCR signalling requires the inhibition of the alpha isoform of diacylglycerol kinase, DGKα, by an unidentified signalling pathway triggered by the protein adaptor SAP. We previously demonstrated that, in SAP absence, excessive DGKα activity makes the T cells resistant to restimulation-induced cell death (RICD), an apoptotic program counteracting excessive T cell clonal expansion. Results: Herein, we report that the Wiskott-Aldrich syndrome protein (WASp) inhibits DGKα through a specific interaction of the DGKα recoverin homology domain with the WH1 domain of WASp. Indeed, WASp is necessary and sufficient for DGKα inhibition, and this WASp function is independent of ARP2/3 activity. The adaptor protein NCK-1 and the small G protein CDC42 connect WASp-mediated DGKα inhibition to SAP and the TCR signalosome. In primary human T cells, this new signalling pathway is necessary for a full response in terms of IL-2 production, while minimally affecting TCR signalling and restimulation-induced cell death. Conversely, in T cells made resistant to RICD by SAP silencing, the enhanced DAG signalling due to DGKα inhibition is sufficient to restore apoptosis sensitivity. Conclusion: We discover a novel signalling pathway where, upon strong TCR activation, the complex between WASp and DGKα blocks DGKα activity, allowing a full cytokine response.


Assuntos
Diacilglicerol Quinase , Proteína da Síndrome de Wiskott-Aldrich , Humanos , Diacilglicerol Quinase/genética , Diglicerídeos , Interleucina-2 , Receptores de Antígenos de Linfócitos T
6.
Semin Immunol ; 42: 101305, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31604537

RESUMO

Immune checkpoint therapy has revolutionized cancer treatment by blocking inhibitory pathways in T cells that limits the an effective anti-tumor immune response. Therapeutics targeting CTLA-4 and PD1/PDL1 have progressed to first line therapy in multiple tumor types with some patients exhibiting tumor regression or remission. However, the majority of patients do not benefit from checkpoint therapy emphasizing the need for alternative therapeutic options. Lymphocyte Activation Gene 3 (LAG3) or CD223 is expressed on multiple cell types including CD4+ and CD8+ T cells, and Tregs, and is required for optimal T cell regulation and homeostasis. Persistent antigen-stimulation in cancer or chronic infection leads to chronic LAG3 expression, promoting T cell exhaustion. Targeting LAG3 along with PD1 facilitates T cell reinvigoration. A substantial amount of pre-clinical data and mechanistic analysis has led to LAG3 being the third checkpoint to be targeted in the clinic with nearly a dozen therapeutics under investigation. In this review, we will discuss the structure, function and role of LAG3 in murine and human models of disease, including autoimmune and inflammatory diseases, chronic viral and parasitic infections, and cancer, emphasizing new advances in the development of LAG3-targeting immunotherapies for cancer that are currently in clinical trials.


Assuntos
Antígenos CD/imunologia , Receptores Imunológicos/imunologia , Animais , Antígenos CD/química , Humanos , Imunoterapia , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Receptores Imunológicos/química , Microambiente Tumoral/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
7.
Eur J Med Chem ; 164: 378-390, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30611057

RESUMO

As part of an effort to identify druggable diacylglycerol kinase alpha (DGKα) inhibitors, we used an in-silico approach based on chemical homology with the two commercially available DGKα inhibitors R59022 and R59949. Ritanserin and compound AMB639752 emerged from the screening of 127 compounds, showing an inhibitory activity superior to the two commercial inhibitors, being furthermore specific for the alpha isoform of diacylglycerol kinase. Interestingly, AMB639752 was also devoid of serotoninergic activity. The ability of both ritanserin and AMB639752, by inhibiting DGKα in intact cells, to restore restimulation induced cell death (RICD) in SAP deficient lymphocytes was also tested. Both compounds restored RICD at concentrations lower than the two previously available inhibitors, indicating their potential use for the treatment of X-linked lymphoproliferative disease 1 (XLP-1), a rare genetic disorder in which DGKα activity is deregulated.


Assuntos
Diacilglicerol Quinase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Transtornos Linfoproliferativos/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Morte Celular/efeitos dos fármacos , Simulação por Computador , Humanos , Piperidinas , Pirimidinonas , Quinazolinonas , Ritanserina , Tiazóis
9.
Nat Genet ; 49(8): 1192-1201, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628108

RESUMO

Few monogenic causes for severe manifestations of common allergic diseases have been identified. Through next-generation sequencing on a cohort of patients with severe atopic dermatitis with and without comorbid infections, we found eight individuals, from four families, with novel heterozygous mutations in CARD11, which encodes a scaffolding protein involved in lymphocyte receptor signaling. Disease improved over time in most patients. Transfection of mutant CARD11 expression constructs into T cell lines demonstrated both loss-of-function and dominant-interfering activity upon antigen receptor-induced activation of nuclear factor-κB and mammalian target of rapamycin complex 1 (mTORC1). Patient T cells had similar defects, as well as low production of the cytokine interferon-γ (IFN-γ). The mTORC1 and IFN-γ production defects were partially rescued by supplementation with glutamine, which requires CARD11 for import into T cells. Our findings indicate that a single hypomorphic mutation in CARD11 can cause potentially correctable cellular defects that lead to atopic dermatitis.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Dermatite Atópica/genética , Mutação em Linhagem Germinativa , Guanilato Ciclase/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Estudos de Coortes , Análise Mutacional de DNA , Dermatite Atópica/imunologia , Feminino , Genes Dominantes , Glutamina/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Antígenos de Histocompatibilidade Menor/metabolismo , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Linhagem , Linfócitos T/imunologia , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Sci Transl Med ; 8(321): 321ra7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764158

RESUMO

X-linked lymphoproliferative disease (XLP-1) is an often-fatal primary immunodeficiency associated with the exuberant expansion of activated CD8(+) T cells after Epstein-Barr virus (EBV) infection. XLP-1 is caused by defects in signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), an adaptor protein that modulates T cell receptor (TCR)-induced signaling. SAP-deficient T cells exhibit impaired TCR restimulation-induced cell death (RICD) and diminished TCR-induced inhibition of diacylglycerol kinase α (DGKα), leading to increased diacylglycerol metabolism and decreased signaling through Ras and PKCθ (protein kinase Cθ). We show that down-regulation of DGKα activity in SAP-deficient T cells restores diacylglycerol signaling at the immune synapse and rescues RICD via induction of the proapoptotic proteins NUR77 and NOR1. Pharmacological inhibition of DGKα prevents the excessive CD8(+) T cell expansion and interferon-γ production that occur in SAP-deficient mice after lymphocytic choriomeningitis virus infection without impairing lytic activity. Collectively, these data highlight DGKα as a viable therapeutic target to reverse the life-threatening EBV-associated immunopathology that occurs in XLP-1 patients.


Assuntos
Diacilglicerol Quinase/antagonistas & inibidores , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/patologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Morte Celular/efeitos dos fármacos , Citocinas/biossíntese , Diacilglicerol Quinase/metabolismo , Inativação Gênica/efeitos dos fármacos , Humanos , Sinapses Imunológicas/efeitos dos fármacos , Sinapses Imunológicas/metabolismo , Ativação Linfocitária , Contagem de Linfócitos , Transtornos Linfoproliferativos/tratamento farmacológico , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/deficiência , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Tiazóis/farmacologia , Proteínas ras/metabolismo
11.
PLoS One ; 9(6): e97144, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24887021

RESUMO

Diacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5ß1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1α stimulation, DGKα is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1α induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKα promotes localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKα by promoting Rac-mediated protrusion elongation and localized recruitment of ß1 integrin and MMP-9. We finally demonstrate that activation of DGKα, atypical PKCs signaling and ß1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the existence of a SDF-1α induced DGKα - atypical PKC - ß1 integrin signaling pathway, which is essential for matrix invasion of carcinoma cells.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quimiocina CXCL12/farmacologia , Diacilglicerol Quinase/metabolismo , Integrina beta1/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Transporte Proteico/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA