Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
medRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712155

RESUMO

Speech and language disorders are known to have a substantial genetic contribution. Although frequently examined as components of other conditions, research on the genetic basis of linguistic differences as separate phenotypic subgroups has been limited so far. Here, we performed an in-depth characterization of speech and language disorders in 52,143 individuals, reconstructing clinical histories using a large-scale data mining approach of the Electronic Medical Records (EMR) from an entire large paediatric healthcare network. The reported frequency of these disorders was the highest between 2 and 5 years old and spanned a spectrum of twenty-six broad speech and language diagnoses. We used Natural Language Processing to assess to which degree clinical diagnosis in full-text notes were reflected in ICD-10 diagnosis codes. We found that aphasia and speech apraxia could be easily retrieved through ICD-10 diagnosis codes, while stuttering as a speech phenotype was only coded in 12% of individuals through appropriate ICD-10 codes. We found significant comorbidity of speech and language disorders in neurodevelopmental conditions (30.31%) and to a lesser degree with epilepsies (6.07%) and movement disorders (2.05%). The most common genetic disorders retrievable in our EMR analysis were STXBP1 (n=21), PTEN (n=20), and CACNA1A (n=18). When assessing associations of genetic diagnoses with specific linguistic phenotypes, we observed associations of STXBP1 and aphasia (P=8.57 × 10-7, CI=18.62-130.39) and MYO7A with speech and language development delay due to hearing loss (P=1.24 × 10-5, CI=17.46-Inf). Finally, in a sub-cohort of 726 individuals with whole exome sequencing data, we identified an enrichment of rare variants in synaptic protein and neuronal receptor pathways and associations of UQCRC1 with expressive aphasia and WASHC4 with abnormality of speech or vocalization. In summary, our study outlines the landscape of paediatric speech and language disorders, confirming the phenotypic complexity of linguistic traits and novel genotype-phenotype associations. Subgroups of paediatric speech and language disorders differ significantly with respect to the composition of monogenic aetiologies.

2.
Am J Hum Genet ; 111(3): 529-543, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38387458

RESUMO

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lipídeos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
3.
Neurology ; 102(2): e207945, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165337

RESUMO

BACKGROUND AND OBJECTIVES: Heterozygous variants in RAR-related orphan receptor B (RORB) have recently been associated with susceptibility to idiopathic generalized epilepsy. However, few reports have been published so far describing pathogenic variants of this gene in patients with epilepsy and intellectual disability (ID). In this study, we aimed to delineate the epilepsy phenotype associated with RORB pathogenic variants and to provide arguments in favor of the pathogenicity of variants. METHODS: Through an international collaboration, we analyzed seizure characteristics, EEG data, and genotypes of a cohort of patients with heterozygous variants in RORB. To gain insight into disease mechanisms, we performed ex vivo cortical electroporation in mouse embryos of 5 selected variants, 2 truncating and 3 missense, and evaluated on expression and quantified changes in axonal morphology. RESULTS: We identified 35 patients (17 male, median age 10 years, range 2.5-23 years) carrying 32 different heterozygous variants in RORB, including 28 single-nucleotide variants or small insertions/deletions (12 missense, 12 frameshift or nonsense, 2 splice-site variants, and 2 in-frame deletions), and 4 microdeletions; de novo in 18 patients and inherited in 10. Seizures were reported in 31/35 (89%) patients, with a median age at onset of 3 years (range 4 months-12 years). Absence seizures occurred in 25 patients with epilepsy (81%). Nineteen patients experienced a single seizure type: absences, myoclonic absences, or absences with eyelid myoclonia and focal seizures. Nine patients had absence seizures combined with other generalized seizure types. One patient had presented with absences associated with photosensitive occipital seizures. Three other patients had generalized tonic-clonic seizures without absences. ID of variable degree was observed in 85% of the patients. Expression studies in cultured neurons showed shorter axons for the 5 tested variants, both truncating and missense variants, supporting an impaired protein function. DISCUSSION: In most patients, the phenotype of the RORB-related disorder associates absence seizures with mild-to-moderate ID. In silico and in vitro evaluation of the variants in our cohort, including axonal morphogenetic experiments in cultured neurons, supports their pathogenicity, showing a hypomorphic effect.


Assuntos
Epilepsia Tipo Ausência , Epilepsia Generalizada , Deficiência Intelectual , Humanos , Masculino , Animais , Camundongos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Lactente , Convulsões , Fenótipo , Epilepsia Tipo Ausência/genética , Epilepsia Generalizada/genética , Genótipo , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares
4.
Epilepsia ; 65(3): 805-816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279907

RESUMO

OBJECTIVE: Individuals with disease-causing variants in STXBP1 frequently have epilepsy onset in the first year of life with a variety of seizure types, including epileptic spasms. However, the impact of early onset seizures and antiseizure medication (ASM) on the risk of developing epileptic spasms and impact on their trajectory are poorly understood, limiting informed and anticipatory treatment, as well as trial design. METHODS: We retrospectively reconstructed seizure and medication histories in weekly intervals for individuals with STXBP1 developmental and epileptic encephalopathy (DEE) with epilepsy onset in the first year of life and quantitatively analyzed longitudinal seizure histories and medication response. RESULTS: We included 61 individuals with early onset seizures, 29 of whom had epileptic spasms. Individuals with neonatal seizures were likely to have continued seizures after the neonatal period (25/26). The risk of developing epileptic spasms was not increased in individuals with neonatal seizures or early infantile seizures (21/41 vs. 8/16, odds ratio [OR] = 1, 95% confidence interval [CI] = .3-3.9, p = 1). We did not find any ASM associated with the development of epileptic spasms following prior seizures. Individuals with prior seizures (n = 16/21, 76%) had a higher risk of developing refractory epileptic spasms (n = 5/8, 63%, OR = 1.9, 95% CI = .2-14.6, p = .6). Individuals with refractory epileptic spasms had a later onset of epileptic spasms (n = 20, median = 20 weeks) compared to individuals with nonrefractory epileptic spasms (n = 8, median = 13 weeks, p = .08). SIGNIFICANCE: We provide a comprehensive assessment of early onset seizures in STXBP1-DEE and show that the risk of epileptic spasms is not increased following a prior history of early life seizures, nor by certain ASMs. Our study provides baseline information for targeted treatment and prognostication in early life seizures in STXBP1-DEE.


Assuntos
Epilepsia , Espasmos Infantis , Recém-Nascido , Humanos , Lactente , Estudos Retrospectivos , Eletroencefalografia , Espasmos Infantis/genética , Espasmos Infantis/tratamento farmacológico , Convulsões/genética , Convulsões/tratamento farmacológico , Epilepsia/complicações , Epilepsia/tratamento farmacológico , Epilepsia/genética , Espasmo , Proteínas Munc18/genética
5.
Brain ; 146(12): 5182-5197, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015929

RESUMO

STXBP1-related disorders are among the most common genetic epilepsies and neurodevelopmental disorders. However, the longitudinal epilepsy course and developmental end points, have not yet been described in detail, which is a critical prerequisite for clinical trial readiness. Here, we assessed 1281 cumulative patient-years of seizure and developmental histories in 162 individuals with STXBP1-related disorders and established a natural history framework. STXBP1-related disorders are characterized by a dynamic pattern of seizures in the first year of life and high variability in neurodevelopmental trajectories in early childhood. Epilepsy onset differed across seizure types, with 90% cumulative onset for infantile spasms by 6 months and focal-onset seizures by 27 months of life. Epilepsy histories diverged between variant subgroups in the first 2 years of life, when individuals with protein-truncating variants and deletions in STXBP1 (n = 39) were more likely to have infantile spasms between 5 and 6 months followed by seizure remission, while individuals with missense variants (n = 30) had an increased risk for focal seizures and ongoing seizures after the first year. Developmental outcomes were mapped using milestone acquisition data in addition to standardized assessments including the Gross Motor Function Measure-66 Item Set and the Grasping and Visual-Motor Integration subsets of the Peabody Developmental Motor Scales. Quantification of end points revealed high variability during the first 5 years of life, with emerging stratification between clinical subgroups. An earlier epilepsy onset was associated with lower developmental abilities, most prominently when assessing gross motor development and expressive communication. We found that individuals with neonatal seizures or early infantile seizures followed by seizure offset by 12 months of life had more predictable seizure trajectories in early to late childhood compared to individuals with more severe seizure presentations, including individuals with refractory epilepsy throughout the first year. Characterization of anti-seizure medication response revealed age-dependent response over time, with phenobarbital, levetiracetam, topiramate and adrenocorticotropic hormone effective in reducing seizures in the first year of life, while clobazam and the ketogenic diet were effective in long-term seizure management. Virtual clinical trials using seizure frequency as the primary outcome resulted in wide range of trial success probabilities across the age span, with the highest probability in early childhood between 1 year and 3.5 years. In summary, we delineated epilepsy and developmental trajectories in STXBP1-related disorders using standardized measures, providing a foundation to interpret future therapeutic strategies and inform rational trial design.


Assuntos
Epilepsia , Espasmos Infantis , Recém-Nascido , Criança , Pré-Escolar , Humanos , Lactente , Anticonvulsivantes/uso terapêutico , Espasmos Infantis/genética , Espasmos Infantis/tratamento farmacológico , Topiramato/uso terapêutico , Convulsões/induzido quimicamente , Proteínas Munc18/genética
6.
Commun Biol ; 6(1): 952, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37723282

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit. Here, we show that unlike missense GRIN2A variants, individuals affected with disease-associated null GRIN2A variants demonstrate a transient period of seizure susceptibility that begins during infancy and diminishes near adolescence. We show increased circuit excitability and CA1 pyramidal cell output in juvenile mice of both Grin2a+/- and Grin2a-/- mice. These alterations in somatic spiking are not due to global upregulation of most Grin genes (including Grin2b). Deeper evaluation of the developing CA1 circuit led us to uncover age- and Grin2a gene dosing-dependent transient delays in the electrophysiological maturation programs of parvalbumin (PV) interneurons. We report that Grin2a+/+ mice reach PV cell electrophysiological maturation between the neonatal and juvenile neurodevelopmental timepoints, with Grin2a+/- mice not reaching PV cell electrophysiological maturation until preadolescence, and Grin2a-/- mice not reaching PV cell electrophysiological maturation until adulthood. Overall, these data may represent a molecular mechanism describing the transient nature of seizure susceptibility in disease-associated null GRIN2A patients.


Assuntos
Cálcio , Parvalbuminas , Receptores de N-Metil-D-Aspartato , Animais , Camundongos , Hipocampo , Interneurônios , Parvalbuminas/genética , Convulsões , Receptores de N-Metil-D-Aspartato/genética
7.
medRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425705

RESUMO

Background and Objectives: Individuals with disease-causing variants in STXBP1 frequently have epilepsy onset in the first year of life with a variety of seizure types, including epileptic spasms. However, the impact of early-onset seizures and anti-seizure medication (ASM) on the risk of developing epileptic spasms and impact on their trajectory is poorly understood, limiting informed and anticipatory treatment, as well as trial design. Methods: We retrospectively reconstructed seizure and medication histories in weekly intervals for individuals with STXBP1-related disorders with epilepsy onset in the first year of life and quantitatively analyzed longitudinal seizure histories and medication response. Results: We included 61 individuals with early onset seizures, 29 of whom had epileptic spasms. Individuals with neonatal seizures were likely to have continued seizures after the neonatal period (25/26). The risk of developing epileptic spasms was not increased in individuals with neonatal seizures or early infantile seizures (21/41 vs. 8/16; OR 1, 95% CI 0.3-3.9, p = 1). We did not find any ASM associated with the development of epileptic spasms following prior seizures. Individuals with prior seizures (n = 16/21, 76%) had a higher risk to develop refractory epileptic spasms (n = 5/8, 63%, OR =1.9, 95% CI 0.2-14.6, p = 0.6). Individuals with refractory epileptic spasms had a later onset of epileptic spasms (n = 20, median 20 weeks) compared to individuals with non-refractory epileptic spasms (n = 8, median 13 weeks; p = 0.08). When assessing treatment response, we found that clonazepam (n = 3, OR 12.6, 95% CI 2.2-509.4; p < 0.01), clobazam (n=7, OR 3, 95% CI 1.6-6.2; p < 0.01), topiramate (n=9, OR 2.3, 95% CI 1.4-3.9; p < 0.01), and levetiracetam (n=16, OR 1.7, 95% CI 1.2-2.4; p < 0.01) were more likely to reduce seizure frequency and/or to maintain seizure freedom with regards to epileptic spasms than other medications. Discussion: We provide a comprehensive assessment of early-onset seizures in STXBP1-related disorders and show that the risk of epileptic spasms is not increased following a prior history of early-life seizures, nor by certain ASM. Our study provides baseline information for targeted treatment and prognostication in early-life seizures in STXBP1-related disorders.

8.
medRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37215006

RESUMO

STXBP1-related disorders are among the most common genetic epilepsies and neurodevelopmental disorders. However, the longitudinal epilepsy course and developmental endpoints have not yet been described in detail, which is a critical prerequisite for clinical trial readiness. Here, we assessed 1,281 cumulative patient-years of seizure and developmental histories in 162 individuals with STXBP1-related disorders and established a natural history framework. STXBP1-related disorders are characterized by a dynamic pattern of seizures in the first year of life and high variability in neurodevelopmental trajectories in early childhood. Epilepsy onset differed across seizure types, with 90% cumulative onset for infantile spasms by 6 months and focal-onset seizures by 27 months of life. Epilepsy histories diverged between variant subgroups in the first 2 years of life, when individuals with protein-truncating variants and deletions in STXBP1 (n=39) were more likely to have infantile spasms between 5 and 6 months followed by seizure remission, while individuals with missense variants (n=30) had an increased risk for focal seizures and ongoing seizures after the first year. Developmental outcomes were mapped using milestone acquisition data in addition to standardized assessments including the Gross Motor Function Measure-66 Item Set and the Grasping and Visual-Motor Integration subsets of the Peabody Developmental Motor Scales. Quantification of endpoints revealed high variability during the first five years of life, with emerging stratification between clinical subgroups, most prominently between individuals with and without infantile spasms. We found that individuals with neonatal seizures or early infantile seizures followed by seizure offset by 12 months of life had more predictable seizure trajectories in early to late childhood than compared to individuals with more severe seizure presentations, including individuals with refractory epilepsy throughout the first year. Characterization of anti-seizure medication response revealed age-dependent response over time, with phenobarbital, levetiracetam, topiramate, and adrenocorticotropic hormone effective in reducing seizures in the first year of life, while clobazam and the ketogenic diet were effective in long-term seizure management. Virtual clinical trials using seizure frequency as the primary outcome resulted in wide range of trial success probabilities across the age span, with the highest probability in early childhood between 1 year and 3.5 years. In summary, we delineated epilepsy and developmental trajectories in STXBP1-related disorders using standardized measures, providing a foundation to interpret future therapeutic strategies and inform rational trial design.

9.
Front Neurol ; 14: 1161161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077567

RESUMO

Introduction: Febrile infection-related epilepsy syndrome (FIRES) is a severe childhood epilepsy with refractory status epilepticus after a typically mild febrile infection. The etiology of FIRES is largely unknown, and outcomes in most individuals with FIRES are poor. Methods: Here, we reviewed the current state-of-the art genetic testing strategies in individuals with FIRES. We performed a systematic computational analysis to identify individuals with FIRES and characterize the clinical landscape using the Electronic Medical Records (EMR). Among 25 individuals with a confirmed FIRES diagnosis over the last decade, we performed a comprehensive review of genetic testing and other diagnostic testing. Results: Management included use of steroids and intravenous immunoglobulin (IVIG) in most individuals, with an increased use of immunomodulatory agents, including IVIG, plasma exchange (PLEX) and immunosuppressants such as cytokine inhibitors, and the ketogenic diet after 2014. Genetic testing was performed on a clinical basis in almost all individuals and was non-diagnostic in all patients. We compared FIRES with both status epilepticus (SE) and refractory status epilepticus (RSE) as a broader comparison cohort and identified genetic causes in 36% of patients with RSE. The difference in genetic signatures between FIRES and RSE suggest distinct underlying etiologies. In summary, despite the absence of any identifiable etiologies in FIRES, we performed an unbiased analysis of the clinical landscape, identifying a heterogeneous range of treatment strategies and characterized real-world clinical practice. Discussion: FIRES remains one of the most enigmatic conditions in child neurology without any known etiologies to date despite significant efforts in the field, suggesting a clear need for further studies and novel diagnostic and treatment approaches.

10.
Curr Opin Neurol ; 36(2): 86-94, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762645

RESUMO

PURPOSE OF REVIEW: In this review, we aim to analyse the progress in understanding the genetic basis of the epilepsies, as well as ongoing efforts to define the increasingly diverse and novel presentations, phenotypes and divergences from the expected that have continually characterized the field. RECENT FINDINGS: A genetic workup is now considered to be standard of care for individuals with an unexplained epilepsy, due to mounting evidence that genetic diagnoses significantly influence treatment choices, prognostication, community support, and increasingly, access to clinical trials. As more individuals with epilepsy are tested, novel presentations of known epilepsy genes are being discovered, and more individuals with self-limited epilepsy are able to attain genetic diagnoses. In addition, new genes causative of epilepsy are being uncovered through both traditional and novel methods, including large international data-sharing collaborations and massive sequencing efforts as well as computational methods and analyses driven by the Human Phenotype Ontology (HPO). SUMMARY: New approaches to gene discovery and characterization are advancing rapidly our understanding of the genetic and phenotypic architecture of the epilepsies. This review highlights relevant and groundbreaking studies published recently that have pushed forward the field of epilepsy genetics.


Assuntos
Epilepsia , Humanos , Epilepsia/genética , Epilepsia/diagnóstico , Fenótipo
11.
Epilepsia Open ; 8(2): 320-333, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625631

RESUMO

OBJECTIVE: STXBP1-related disorders are rare genetic epilepsies and neurodevelopmental disorders, but the impact of symptoms across clinical domains is poorly understood. Disease concept models are formal frameworks to assess the lived experience of individuals and their families and provide a basis for generating outcome measures. METHODS: We conducted semistructured, qualitative interviews with 19 caregivers of 16 individuals with STXBP1-related disorders and 7 healthcare professionals. We systematically coded themes using NVivo software and grouped concepts into the domains of symptoms, symptom impact, and caregiver impact. We quantified the frequency of concepts throughout the lifespan and across clinical subgroups stratified by seizure history and developmental trajectories. RESULTS: Over 25 hours of interviews, we coded a total of 3626 references to 38 distinct concepts. In addition to well-recognized clinical features such as developmental delay (n = 240 references), behavior (n = 201), and seizures (n = 147), we identified previously underrepresented symptoms including gastrointestinal (n = 68) and respiratory symptoms (n = 24) and pain (n = 30). The most frequently referenced symptom impacts were autonomy (n = 96), socialization (n = 64), and schooling (n = 61). Emotional impact (n = 354), support (n = 200), and daily life & activities (n = 108) were highly cited caregiver impacts. We found that seizures were more commonly referenced in infancy than in other age groups, while behavior and socialization were more likely to be referred to in childhood. We found that caregivers of individuals with ongoing seizures were less likely to reference developmental delay, possibly due to the relatively high impact of seizures. SIGNIFICANCE: STXBP1-related disorders are complex conditions affecting a wide range of clinical and social domains. We comprehensively mapped symptoms and their impact on families to generate a comprehensive disease model as a foundation for clinical endpoints in future trials.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Humanos , Epilepsia/genética , Convulsões/genética , Transtornos do Neurodesenvolvimento/genética , Cuidadores , Socialização , Proteínas Munc18/genética
12.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36648066

RESUMO

TRPM3 is a temperature- and neurosteroid-sensitive plasma membrane cation channel expressed in a variety of neuronal and non-neuronal cells. Recently, rare de novo variants in TRPM3 were identified in individuals with developmental and epileptic encephalopathy, but the link between TRPM3 activity and neuronal disease remains poorly understood. We previously reported that two disease-associated variants in TRPM3 lead to a gain of channel function . Here, we report a further 10 patients carrying one of seven additional heterozygous TRPM3 missense variants. These patients present with a broad spectrum of neurodevelopmental symptoms, including global developmental delay, intellectual disability, epilepsy, musculo-skeletal anomalies, and altered pain perception. We describe a cerebellar phenotype with ataxia or severe hypotonia, nystagmus, and cerebellar atrophy in more than half of the patients. All disease-associated variants exhibited a robust gain-of-function phenotype, characterized by increased basal activity leading to cellular calcium overload and by enhanced responses to the neurosteroid ligand pregnenolone sulfate when co-expressed with wild-type TRPM3 in mammalian cells. The antiseizure medication primidone, a known TRPM3 antagonist, reduced the increased basal activity of all mutant channels. These findings establish gain-of-function of TRPM3 as the cause of a spectrum of autosomal dominant neurodevelopmental disorders with frequent cerebellar involvement in humans and provide support for the evaluation of TRPM3 antagonists as a potential therapy.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Neuroesteroides , Canais de Cátion TRPM , Animais , Humanos , Mutação com Ganho de Função , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética , Canais Iônicos/genética , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Mamíferos/metabolismo
13.
Brain ; 145(5): 1668-1683, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190816

RESUMO

Disease-causing variants in STXBP1 are among the most common genetic causes of neurodevelopmental disorders. However, the phenotypic spectrum in STXBP1-related disorders is wide and clear correlations between variant type and clinical features have not been observed so far. Here, we harmonized clinical data across 534 individuals with STXBP1-related disorders and analysed 19 973 derived phenotypic terms, including phenotypes of 253 individuals previously unreported in the scientific literature. The overall phenotypic landscape in STXBP1-related disorders is characterized by neurodevelopmental abnormalities in 95% and seizures in 89% of individuals, including focal-onset seizures as the most common seizure type (47%). More than 88% of individuals with STXBP1-related disorders have seizure onset in the first year of life, including neonatal seizure onset in 47%. Individuals with protein-truncating variants and deletions in STXBP1 (n = 261) were almost twice as likely to present with West syndrome and were more phenotypically similar than expected by chance. Five genetic hotspots with recurrent variants were identified in more than 10 individuals, including p.Arg406Cys/His (n = 40), p.Arg292Cys/His/Leu/Pro (n = 30), p.Arg551Cys/Gly/His/Leu (n = 24), p.Pro139Leu (n = 12), and p.Arg190Trp (n = 11). None of the recurrent variants were significantly associated with distinct electroclinical syndromes, single phenotypic features, or showed overall clinical similarity, indicating that the baseline variability in STXBP1-related disorders is too high for discrete phenotypic subgroups to emerge. We then reconstructed the seizure history in 62 individuals with STXBP1-related disorders in detail, retrospectively assigning seizure type and seizure frequency monthly across 4433 time intervals, and retrieved 251 anti-seizure medication prescriptions from the electronic medical records. We demonstrate a dynamic pattern of seizure control and complex interplay with response to specific medications particularly in the first year of life when seizures in STXBP1-related disorders are the most prominent. Adrenocorticotropic hormone and phenobarbital were more likely to initially reduce seizure frequency in infantile spasms and focal seizures compared to other treatment options, while the ketogenic diet was most effective in maintaining seizure freedom. In summary, we demonstrate how the multidimensional spectrum of phenotypic features in STXBP1-related disorders can be assessed using a computational phenotype framework to facilitate the development of future precision-medicine approaches.


Assuntos
Epilepsia , Espasmos Infantis , Eletroencefalografia , Epilepsia/genética , Humanos , Lactente , Proteínas Munc18/genética , Estudos Retrospectivos , Convulsões/genética , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA