Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Neurosci ; 27(3): 433-448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267524

RESUMO

The integrity of myelinated axons relies on homeostatic support from oligodendrocytes (OLs). To determine how OLs detect axonal spiking and how rapid axon-OL metabolic coupling is regulated in the white matter, we studied activity-dependent calcium (Ca2+) and metabolite fluxes in the mouse optic nerve. We show that fast axonal spiking triggers Ca2+ signaling and glycolysis in OLs. OLs detect axonal activity through increases in extracellular potassium (K+) concentrations and activation of Kir4.1 channels, thereby regulating metabolite supply to axons. Both pharmacological inhibition and OL-specific inactivation of Kir4.1 reduce the activity-induced axonal lactate surge. Mice lacking oligodendroglial Kir4.1 exhibit lower resting lactate levels and altered glucose metabolism in axons. These early deficits in axonal energy metabolism are associated with late-onset axonopathy. Our findings reveal that OLs detect fast axonal spiking through K+ signaling, making acute metabolic coupling possible and adjusting the axon-OL metabolic unit to promote axonal health.


Assuntos
Axônios , Substância Branca , Camundongos , Animais , Axônios/fisiologia , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Homeostase , Lactatos/metabolismo
2.
BMC Biol ; 21(1): 266, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993917

RESUMO

BACKGROUND: Unlike most free-living platyhelminths, catenulids, the sister group to all remaining flatworms, do not have eyes. Instead, the most prominent sensory structures in their heads are statocysts or sensory pits. The latter, found in the family Stenostomidae, are concave depressions located laterally on the head that represent one of the taxonomically important traits of the family. In the past, the sensory pits of flatworms have been homologized with the cephalic organs of nemerteans, a clade that occupies a sister position to platyhelminths in some recent phylogenies. To test for this homology, we studied morphology and gene expression in the sensory pits of the catenulid Stenostomum brevipharyngium. RESULTS: We used confocal and electron microscopy to investigate the detailed morphology of the sensory pits, as well as their formation during regeneration and asexual reproduction. The most prevalent cell type within the organ is epidermally-derived neuron-like cells that have cell bodies embedded deeply in the brain lobes and long neurite-like processes extending to the bottom of the pit. Those elongated processes are adorned with extensive microvillar projections that fill up the cavity of the pit, but cilia are not associated with the sensory pit. We also studied the expression patterns of some of the transcription factors expressed in the nemertean cephalic organs during the development of the pits. Only a single gene, pax4/6, is expressed in both the cerebral organs of nemerteans and sensory pits of S. brevipharyngium, challenging the idea of their deep homology. CONCLUSIONS: Since there is no morphological or molecular correspondence between the sensory pits of Stenostomum and the cerebral organs of nemerteans, we reject their homology. Interestingly, the major cell type contributing to the sensory pits of stenostomids shows ultrastructural similarities to the rhabdomeric photoreceptors of other flatworms and expresses ortholog of the gene pax4/6, the pan-bilaterian master regulator of eye development. We suggest that the sensory pits of stenostomids might have evolved from the ancestral rhabdomeric photoreceptors that lost their photosensitivity and evolved secondary function. The mapping of head sensory structures on plathelminth phylogeny indicates that sensory pit-like organs evolved many times independently in flatworms.


Assuntos
Platelmintos , Animais , Platelmintos/genética , Filogenia , Fatores de Transcrição/genética , Reprodução Assexuada , Encéfalo
3.
J Med Imaging (Bellingham) ; 10(5): 056001, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37885921

RESUMO

Purpose: X-ray phase-contrast tomography (XPCT) is a non-destructive, three-dimensional imaging modality that provides higher contrast in soft tissue than absorption-based CT and allows one to cover the cytoarchitecture from the centi- and millimeter scale down to the nanoscale. To further increase contrast and resolution of XPCT, for example, in view of addressing connectivity issues in the central nervous system (CNS), metal staining is indispensable. However, currently used protocols, for example, based on osmium and/or uranium are less suited for XPCT, due to an excessive ß/δ-ratio. In this work, we explore the suitability of different staining agents for XPCT. Particularly, neodymium(III)-acetate (NdAc), which has recently been proposed as a non-toxic, non-radioactive easy to use alternative contrast agent for uranyl acetate (UAc) in electron microscopy, is investigated. Due to its vertical proximity to UAc in the periodic table, similar chemical but better suited optical properties for phase contrast can be expected. Approach: Differently stained whole eye samples of wild type mouse and tissues of the CNS are embedded into EPON epoxy resin and scanned using synchrotron as well as with laboratory radiation. Phase retrieval is performed on the projection images, followed by tomographic reconstruction, which enables a quantitative analysis based on the reconstructed electron densities. Segmentation techniques and rendering software is used to visualize structures of interest in the sample. Results: We show that staining neuronal samples with NdAc enhances contrast, in particular for laboratory scans, allowing high-resolution imaging of biological soft tissue in-house. For the example of murine retina, specifically rods and cones as well as the sclera and the Ganglion cell layer seem to be targeted by the stain. A comparison of electron density by the evaluation of histograms allowed to determine quantitative measures to describe the difference between the examined stains. Conclusion: The results suggest NdAc to be an effective stain for XPCT, with a preferential binding to anionic groups, such as phosphate and carboxyl groups at cell surfaces, targeting certain layers of the retina with a stronger selectivity compared to other staining agents. Due to the advantageous X-ray optical properties, the stain seems particularly well-suited for phase contrast, with a comparably small number density and an overall superior image quality at laboratory sources.

4.
Nature ; 618(7964): 349-357, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258678

RESUMO

The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-ß (Aß) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aß-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aß plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Bainha de Mielina , Placa Amiloide , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Axônios/metabolismo , Axônios/patologia , Microglia/metabolismo , Microglia/patologia , Análise da Expressão Gênica de Célula Única , Fatores de Risco , Progressão da Doença
5.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36637807

RESUMO

To enable rapid propagation of action potentials, axons are ensheathed by myelin, a multilayered insulating membrane formed by oligodendrocytes. Most of the myelin is generated early in development, resulting in the generation of long-lasting stable membrane structures. Here, we explored structural and dynamic changes in central nervous system myelin during development. To achieve this, we performed an ultrastructural analysis of mouse optic nerves by serial block face scanning electron microscopy (SBF-SEM) and confocal time-lapse imaging in the zebrafish spinal cord. We found that myelin undergoes extensive ultrastructural changes during early postnatal development. Myelin degeneration profiles were engulfed and phagocytosed by microglia using exposed phosphatidylserine as one "eat me" signal. In contrast, retractions of entire myelin sheaths occurred independently of microglia and involved uptake of myelin by the oligodendrocyte itself. Our findings show that the generation of myelin early in development is an inaccurate process associated with aberrant ultrastructural features that require substantial refinement.


Assuntos
Microglia , Bainha de Mielina , Nervo Óptico , Peixe-Zebra , Animais , Camundongos , Axônios/ultraestrutura , Microglia/ultraestrutura , Bainha de Mielina/ultraestrutura , Oligodendroglia/ultraestrutura , Nervo Óptico/ultraestrutura , Microscopia Eletrônica de Varredura , Fagocitose , Imagem com Lapso de Tempo
6.
Ann Neurol ; 93(4): 856-870, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36565265

RESUMO

OBJECTIVE: Changes in the normal-appearing white matter (NAWM) in multiple sclerosis (MS) may contribute to disease progression. Here, we systematically quantified ultrastructural and subcellular characteristics of the axon-myelin unit in MS NAWM and determined how this correlates with low-grade inflammation. METHODS: Human brain tissue obtained with short postmortem delay and fixation at autopsy enables systematic quantification of ultrastructural characteristics. In this study, we performed high-resolution immunohis tochemistry and quantitative transmission electron microscopy to study inflammation and ultrastructural characteristics of the axon-myelin unit in MS NAWM (n = 8) and control white matter (WM) in the optic nerve. RESULTS: In the MS NAWM, there were more activated and phagocytic microglia cells (HLA+ P2RY12- and Iba1+ CD68+ ) and more T cells (CD3+ ) compared to control WM, mainly located in the perivascular space. In MS NAWM compared to control WM, there were, as expected, longer paranodes and juxtaparanodes and larger overlap between paranodes and juxtaparanodes. There was less compact myelin wrapping, a lower g-ratio, and a higher frequency of axonal mitochondria. Changes in myelin and axonal mitochondrial frequency correlated positively with the number of active and phagocytic microglia and lymphocytes in the optic nerve. INTERPRETATION: These data suggest that in MS NAWM myelin detachment and uncompact myelin wrapping occurs, potassium channels are unmasked at the nodes of Ranvier, and axonal energy demand is increased, or mitochondrial transport is stagnated, accompanied by increased presence of activated and phagocytic microglia and T cells. These subclinical alterations to the axon-myelin unit in MS NAWM may contribute to disease progression. ANN NEUROL 2023;93:856-870.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/complicações , Bainha de Mielina , Axônios , Encéfalo , Inflamação/complicações , Progressão da Doença , Imageamento por Ressonância Magnética
7.
Science ; 378(6617): eabq4835, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264786

RESUMO

Full-grown oocytes are transcriptionally silent and must stably maintain the messenger RNAs (mRNAs) needed for oocyte meiotic maturation and early embryonic development. However, where and how mammalian oocytes store maternal mRNAs is unclear. Here, we report that mammalian oocytes accumulate mRNAs in a mitochondria-associated ribonucleoprotein domain (MARDO). MARDO assembly around mitochondria was promoted by the RNA-binding protein ZAR1 and directed by an increase in mitochondrial membrane potential during oocyte growth. MARDO foci coalesced into hydrogel-like matrices that clustered mitochondria. Maternal mRNAs stored in the MARDO were translationally repressed. Loss of ZAR1 disrupted the MARDO, dispersed mitochondria, and caused a premature loss of MARDO-localized mRNAs. Thus, a mitochondria-associated membraneless compartment controls mitochondrial distribution and regulates maternal mRNA storage, translation, and decay to ensure fertility in mammals.


Assuntos
Mitocôndrias , Oócitos , RNA Mensageiro Estocado , Animais , Feminino , Hidrogéis , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oócitos/metabolismo , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Humanos , Camundongos , Suínos , Bovinos , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo
8.
Sci Adv ; 8(37): eabo7639, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112685

RESUMO

To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.


Assuntos
Encéfalo , Dieta Cetogênica , Animais , Encéfalo/metabolismo , Carboidratos , Corpos Cetônicos/metabolismo , Camundongos , Proteoma/metabolismo
9.
Elife ; 112022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35274615

RESUMO

Oligodendrocytes facilitate rapid impulse propagation along the axons they myelinate and support their long-term integrity. However, the functional relevance of many myelin proteins has remained unknown. Here, we find that expression of the tetraspan-transmembrane protein CMTM5 (chemokine-like factor-like MARVEL-transmembrane domain containing protein 5) is highly enriched in oligodendrocytes and central nervous system (CNS) myelin. Genetic disruption of the Cmtm5 gene in oligodendrocytes of mice does not impair the development or ultrastructure of CNS myelin. However, oligodendroglial Cmtm5 deficiency causes an early-onset progressive axonopathy, which we also observe in global and tamoxifen-induced oligodendroglial Cmtm5 mutants. Presence of the WldS mutation ameliorates the axonopathy, implying a Wallerian degeneration-like pathomechanism. These results indicate that CMTM5 is involved in the function of oligodendrocytes to maintain axonal integrity rather than myelin biogenesis.


Assuntos
Bainha de Mielina , Oligodendroglia , Animais , Axônios/fisiologia , Sistema Nervoso Central/metabolismo , Camundongos , Proteínas da Mielina/genética , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
10.
Cell Rep ; 38(10): 110484, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263595

RESUMO

The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity, and memory are still poorly explored. Astrocytes form large intercellular networks by gap junction coupling, mainly composed of two gap junction channel proteins, connexin 30 (Cx30) and connexin 43 (Cx43). To circumvent developmental perturbations and to test whether astrocytic gap junction coupling is required for hippocampal neural circuit function and behavior, we generate and study inducible, astrocyte-specific Cx30 and Cx43 double knockouts. Surprisingly, disrupting astrocytic coupling in adult mice results in broad activation of astrocytes and microglia, without obvious signs of pathology. We show that hippocampal CA1 neuron excitability, excitatory synaptic transmission, and long-term potentiation are significantly affected. Moreover, behavioral inspection reveals deficits in sensorimotor performance and a complete lack of spatial learning and memory. Together, our findings establish that astrocytic connexins and an intact astroglial network in the adult brain are vital for neural homeostasis, plasticity, and spatial cognition.


Assuntos
Astrócitos , Conexina 43 , Animais , Astrócitos/metabolismo , Conexina 30/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Camundongos , Plasticidade Neuronal/fisiologia , Aprendizagem Espacial
11.
Nat Commun ; 13(1): 1163, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246535

RESUMO

Myelin, the electrically insulating sheath on axons, undergoes dynamic changes over time. However, it is composed of proteins with long lifetimes. This raises the question how such a stable structure is renewed. Here, we study the integrity of myelinated tracts after experimentally preventing the formation of new myelin in the CNS of adult mice, using an inducible Mbp null allele. Oligodendrocytes survive recombination, continue to express myelin genes, but they fail to maintain compacted myelin sheaths. Using 3D electron microscopy and mass spectrometry imaging we visualize myelin-like membranes failing to incorporate adaxonally, most prominently at juxta-paranodes. Myelinoid body formation indicates degradation of existing myelin at the abaxonal side and the inner tongue of the sheath. Thinning of compact myelin and shortening of internodes result in the loss of about 50% of myelin and axonal pathology within 20 weeks post recombination. In summary, our data suggest that functional axon-myelin units require the continuous incorporation of new myelin membranes.


Assuntos
Bainha de Mielina , Substância Branca , Animais , Axônios/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Oligodendroglia
12.
J Exp Clin Cancer Res ; 40(1): 395, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911552

RESUMO

BACKGROUND: Breast cancer has been associated with activation of the WNT signaling pathway, although no driver mutations in WNT genes have been found yet. Instead, a high expression of the alternative WNT receptor ROR2 was observed, in particular in breast cancer brain metastases. However, its respective ligand and downstream signaling in this context remained unknown. METHODS: We modulated the expression of ROR2 in human breast cancer cells and characterized their gene and protein expression by RNA-Seq, qRT-PCR, immunoblots and reverse phase protein array (RPPA) combined with network analyses to understand the molecular basis of ROR2 signaling in breast cancer. Using co-immunoprecipitations, we verified the interaction of ROR2 with the identified ligand, WNT11. The functional consequences of WNT11/ROR2 signaling for tumor cell aggressiveness were assessed by microscopy, impedance sensing as well as viability and invasion assays. To evaluate the translational significance of our findings, we performed gene set enrichment, expression and survival analyses on human breast cancer brain metastases. RESULTS: We found ROR2 to be highly expressed in aggressive breast tumors and associated with worse metastasis-free survival. ROR2 overexpression induced a BRCAness-like phenotype in a cell-context specific manner and rendered cells resistant to PARP inhibition. High levels of ROR2 were furthermore associated with defects in cell morphology and cell-cell-contacts leading to increased tumor invasiveness. On a molecular level, ROR2 overexpression upregulated several non-canonical WNT ligands, in particular WNT11. Co-immunoprecipitation confirmed that WNT11 indeed interacts with the cysteine-rich domain of ROR2 and triggers its invasion-promoting signaling via RHO/ROCK. Knockdown of WNT11 reversed the pro-invasive phenotype and the cellular changes in ROR2-overexpressing cells. CONCLUSIONS: Taken together, our study revealed a novel auto-stimulatory loop in which ROR2 triggers the expression of its own ligand, WNT11, resulting in enhanced tumor invasion associated with breast cancer metastasis.


Assuntos
Neoplasias Encefálicas/genética , Via de Sinalização Wnt/genética , Neoplasias Encefálicas/mortalidade , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Análise de Sobrevida , Transfecção
13.
Neurooncol Adv ; 3(1): vdab140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34647026

RESUMO

BACKGROUND: Pharmaceutical intervention in the CNS is hampered by the shielding function of the blood-brain barrier (BBB). To induce clinical anesthesia, general anesthetics such as isoflurane readily penetrate the BBB. Here, we investigated whether isoflurane can be utilized for therapeutic drug delivery. METHODS: Barrier function in primary endothelial cells was evaluated by transepithelial/transendothelial electrical resistance, and nanoscale STED and SRRF microscopy. In mice, BBB permeability was quantified by extravasation of several fluorescent tracers. Mouse models including the GL261 glioma model were evaluated by MRI, immunohistochemistry, electron microscopy, western blot, and expression analysis. RESULTS: Isoflurane enhances BBB permeability in a time- and concentration-dependent manner. We demonstrate that, mechanistically, isoflurane disturbs the organization of membrane lipid nanodomains and triggers caveolar transport in brain endothelial cells. BBB tightness re-establishes directly after termination of anesthesia, providing a defined window for drug delivery. In a therapeutic glioblastoma trial in mice, simultaneous exposure to isoflurane and cytotoxic agent improves efficacy of chemotherapy. CONCLUSIONS: Combination therapy, involving isoflurane-mediated BBB permeation with drug administration has far-reaching therapeutic implications for CNS malignancies.

14.
Life (Basel) ; 11(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670172

RESUMO

Although myelinated nervous systems are shared among 60,000 jawed vertebrates, studies aimed at understanding myelination have focused more and more on mice and zebrafish. To obtain a broader understanding of the myelination process, we examined the little skate, Leucoraja erinacea. The reasons behind initiating studies at this time include: the desire to study a species belonging to an out group of other jawed vertebrates; using a species with embryos accessible throughout development; the availability of genome sequences; and the likelihood that mammalian antibodies recognize homologs in the chosen species. We report that the morphological features of myelination in a skate hatchling, a stage that supports complex behavioral repertoires needed for survival, are highly similar in terms of: appearances of myelinating oligodendrocytes (CNS) and Schwann cells (PNS); the way their levels of myelination conform to axon caliber; and their identity in terms of nodal and paranodal specializations. These features provide a core for further studies to determine: axon-myelinating cell communication; the structures of the proteins and lipids upon which myelinated fibers are formed; the pathways used to transport these molecules to sites of myelin assembly and maintenance; and the gene regulatory networks that control their expressions.

15.
Biomed Opt Express ; 12(12): 7582-7598, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35003854

RESUMO

In this work, we optimize the setups and experimental parameters of X-ray phase-contrast computed-tomography for the three-dimensional imaging of the cyto- and myeloarchitecture of cerebral cortex, including both human and murine tissue. We present examples for different optical configurations using state-of-the art synchrotron instruments for holographic tomography, as well as compact laboratory setups for phase-contrast tomography in the direct contrast (edge-enhancement) regime. Apart from unstained and paraffin-embedded tissue, we tested hydrated tissue, as well as heavy metal stained and resin-embedded tissue using two different protocols. Further, we show that the image quality achieved allows to assess the neuropathology of multiple sclerosis in a biopsy sample collected during surgery.

16.
Glia ; 69(3): 655-680, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33045105

RESUMO

Encephalopathy of prematurity (EoP) is a common cause of long-term neurodevelopmental morbidity in extreme preterm infants. Diffuse white matter injury (dWMI) is currently the most commonly observed form of EoP. Impaired maturation of oligodendrocytes (OLs) is the main underlying pathophysiological mechanism. No therapies are currently available to combat dWMI. Intranasal application of mesenchymal stem cells (MSCs) is a promising therapeutic option to boost neuroregeneration after injury. Here, we developed a double-hit dWMI mouse model and investigated the therapeutic potential of intranasal MSC therapy. Postnatal systemic inflammation and hypoxia-ischemia led to transient deficits in cortical myelination and OL maturation, functional deficits and neuroinflammation. Intranasal MSCs migrated dispersedly into the injured brain and potently improved myelination and functional outcome, dampened cerebral inflammationand rescued OL maturation after dWMI. Cocultures of MSCs with primary microglia or OLs show that MSCs secrete factors that directly promote OL maturation and dampen neuroinflammation. We show that MSCs adapt their secretome after ex vivo exposure to dWMI milieu and identified several factors including IGF1, EGF, LIF, and IL11 that potently boost OL maturation. Additionally, we showed that MSC-treated dWMI brains express different levels of these beneficial secreted factors. In conclusion, the combination of postnatal systemic inflammation and hypoxia-ischemia leads to a pattern of developmental brain abnormalities that mimics the clinical situation. Intranasal delivery of MSCs, that secrete several beneficial factors in situ, is a promising strategy to restore myelination after dWMI and subsequently improve the neurodevelopmental outcome of extreme preterm infants in the future.


Assuntos
Lesões Encefálicas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Humanos , Hipóxia , Recém-Nascido , Recém-Nascido Prematuro , Inflamação , Camundongos , Doenças Neuroinflamatórias , Secretoma
17.
Nat Neurosci ; 24(1): 47-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33349711

RESUMO

The repair of inflamed, demyelinated lesions as in multiple sclerosis (MS) necessitates the clearance of cholesterol-rich myelin debris by microglia/macrophages and the switch from a pro-inflammatory to an anti-inflammatory lesion environment. Subsequently, oligodendrocytes increase cholesterol levels as a prerequisite for synthesizing new myelin membranes. We hypothesized that lesion resolution is regulated by the fate of cholesterol from damaged myelin and oligodendroglial sterol synthesis. By integrating gene expression profiling, genetics and comprehensive phenotyping, we found that, paradoxically, sterol synthesis in myelin-phagocytosing microglia/macrophages determines the repair of acutely demyelinated lesions. Rather than producing cholesterol, microglia/macrophages synthesized desmosterol, the immediate cholesterol precursor. Desmosterol activated liver X receptor (LXR) signaling to resolve inflammation, creating a permissive environment for oligodendrocyte differentiation. Moreover, LXR target gene products facilitated the efflux of lipid and cholesterol from lipid-laden microglia/macrophages to support remyelination by oligodendrocytes. Consequently, pharmacological stimulation of sterol synthesis boosted the repair of demyelinated lesions, suggesting novel therapeutic strategies for myelin repair in MS.


Assuntos
Doenças Desmielinizantes/patologia , Microglia/fisiologia , Esteróis/biossíntese , Animais , Colesterol/metabolismo , Desmosterol/metabolismo , Encefalomielite Autoimune Experimental , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla , Oligodendroglia/metabolismo , Fagocitose , Esqualeno/metabolismo
18.
Front Immunol ; 11: 575451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329540

RESUMO

CNS autoantigens conjugated to oxidized mannan (OM) induce antigen-specific T cell tolerance and protect mice against autoimmune encephalomyelitis (EAE). To investigate whether OM-peptides treat EAE initiated by human MHC class II molecules, we administered OM-conjugated murine myelin oligodendrocyte glycoprotein peptide 35-55 (OM-MOG) to humanized HLA-DR2b transgenic mice (DR2b.Ab°), which are susceptible to MOG-EAE. OM-MOG protected DR2b.Ab° mice against MOG-EAE by both prophylactic and therapeutic applications. OM-MOG reversed clinical symptoms, reduced spinal cord inflammation, demyelination, and neuronal damage in DR2b.Ab° mice, while preserving axons within lesions and inducing the expression of genes associated with myelin (Mbp) and neuron (Snap25) recovery in B6 mice. OM-MOG-induced tolerance was peptide-specific, not affecting PLP178-191-induced EAE or polyclonal T cell proliferation responses. OM-MOG-induced immune tolerance involved rapid induction of PD-L1- and IL-10-producing myeloid cells, increased expression of Chi3l3 (Ym1) in secondary lymphoid organs and characteristics of anergy in MOG-specific CD4+ T cells. The results show that OM-MOG treats MOG-EAE in a peptide-specific manner, across mouse/human MHC class II barriers, through induction of a peripheral type 2 myeloid cell response and T cell anergy, and suggest that OM-peptides might be useful for suppressing antigen-specific CD4+ T cell responses in the context of human autoimmune CNS demyelination.


Assuntos
Axônios/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Imunossupressores/farmacologia , Células Mieloides/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Adulto , Animais , Axônios/imunologia , Axônios/metabolismo , Axônios/patologia , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Regulação da Expressão Gênica , Grécia , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem
19.
Acta Neuropathol Commun ; 8(1): 224, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33357244

RESUMO

Demyelinated lesions in human pons observed after osmotic shifts in serum have been referred to as central pontine myelinolysis (CPM). Astrocytic damage, which is prominent in neuroinflammatory diseases like neuromyelitis optica (NMO) and multiple sclerosis (MS), is considered the primary event during formation of CPM lesions. Although more data on the effects of astrocyte-derived factors on oligodendrocyte precursor cells (OPCs) and remyelination are emerging, still little is known about remyelination of lesions with primary astrocytic loss. In autopsy tissue from patients with CPM as well as in an experimental model, we were able to characterize OPC activation and differentiation. Injections of the thymidine-analogue BrdU traced the maturation of OPCs activated in early astrocyte-depleted lesions. We observed rapid activation of the parenchymal NG2+ OPC reservoir in experimental astrocyte-depleted demyelinated lesions, leading to extensive OPC proliferation. One week after lesion initiation, most parenchyma-derived OPCs expressed breast carcinoma amplified sequence-1 (BCAS1), indicating the transition into a pre-myelinating state. Cells derived from this early parenchymal response often presented a dysfunctional morphology with condensed cytoplasm and few extending processes, and were only sparsely detected among myelin-producing or mature oligodendrocytes. Correspondingly, early stages of human CPM lesions also showed reduced astrocyte numbers and non-myelinating BCAS1+ oligodendrocytes with dysfunctional morphology. In the rat model, neural stem cells (NSCs) located in the subventricular zone (SVZ) were activated while the lesion was already partially repopulated with OPCs, giving rise to nestin+ progenitors that generated oligodendroglial lineage cells in the lesion, which was successively repopulated with astrocytes and remyelinated. These nestin+ stem cell-derived progenitors were absent in human CPM cases, which may have contributed to the inefficient lesion repair. The present study points to the importance of astrocyte-oligodendrocyte interactions for remyelination, highlighting the necessity to further determine the impact of astrocyte dysfunction on remyelination inefficiency in demyelinating disorders including MS.


Assuntos
Astrócitos/fisiologia , Diferenciação Celular , Mielinólise Central da Ponte/patologia , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia , Adulto , Idoso , Animais , Antidiuréticos , Astrócitos/patologia , Linhagem da Célula , Desamino Arginina Vasopressina , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Humanos , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Masculino , Pessoa de Meia-Idade , Bainha de Mielina , Mielinólise Central da Ponte/induzido quimicamente , Mielinólise Central da Ponte/metabolismo , Proteínas de Neoplasias/metabolismo , Nestina/metabolismo , Células-Tronco Neurais , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Ratos , Cloreto de Sódio
20.
Nat Commun ; 11(1): 5497, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127910

RESUMO

Myelinating oligodendrocytes enable fast propagation of action potentials along the ensheathed axons. In addition, oligodendrocytes play diverse non-canonical roles including axonal metabolic support and activity-dependent myelination. An open question remains whether myelination also contributes to information processing in addition to speeding up conduction velocity. Here, we analyze the role of myelin in auditory information processing using paradigms that are also good predictors of speech understanding in humans. We compare mice with different degrees of dysmyelination using acute multiunit recordings in the auditory cortex, in combination with behavioral readouts. We find complex alterations of neuronal responses that reflect fatigue and temporal acuity deficits. We observe partially discriminable but similar deficits in well myelinated mice in which glial cells cannot fully support axons metabolically. We suggest a model in which myelination contributes to sustained stimulus perception in temporally complex paradigms, with a role of metabolically active oligodendrocytes in cortical information processing.


Assuntos
Axônios/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/fisiologia , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/patologia , Comportamento Animal , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Neuroglia , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA