RESUMO
Mandarin fish (Siniperca chuatsi) represents a typical carnivorous freshwater economic fish in China. Recently, the study of their feeding behavior to acclimate formulated diets has become a research focus. This study evaluated the effects of various diets on the body composition, nutritional content, digestive enzyme activity, gene expression, and gut microbiota of mandarin fish. Firstly, no significant differences were found in the muscle's basic nutritional components (moisture, crude protein, crude fat, and crude ash), as well as in the fatty acid and amino acid content, between the live feed group (LFSC) and the compound feed group (CFSC). However, mandarin fish in the LFSC group exhibited significantly higher lipase activity in the liver and intestine compared to the CFSC group, while amylase activity in the intestine showed an opposite pattern. Additionally, intestinal transcriptome analysis revealed 6238 differentially expressed genes and identified several differentially expressed clock genes associated with diet type. Furthermore, gut microbiota analysis indicated that different feeding regimens influenced microbial composition, revealing correlations between bacterial genera and intestinal gene expression levels. These findings provided novel insights into the gut microbiota and transcriptomic responses of mandarin fish to different dietary types.
RESUMO
Acrossocheilus fasciatus (Cypriniformes, Cyprinidae) is emerged as a newly commercial stream fish in the south of China with high economic and ornamental value. In this study, a chromosome-level reference genome of A. fasciatus was assembled using PacBio, Illumina and Hi-C sequencing technologies. As a result, a high-quality genome was generated with a size of 879.52 Mb (accession number: JAVLVS000000000), scaffold N50 of 32.7 Mb, and contig N50 of 32.7 Mb. The largest and smallest scafford was 60.57 Mb and 16 kb, respectively. BUSCO analysis showed a completeness score of 98.3%. Meanwhile, the assembled sequences were anchored to 25 pseudo-chromosomes with an integration efficiency of 96.95%. Additionally, we found approximately 390.91 Mb of repetitive sequences that accounting for 44.45% of the assembled genome, and predicted 24,900 protein-coding genes. The available genome reported in the present study provided a crucial resource to further investigate the regulation mechanism of genetic diversity, sexual dimorphism and evolutionary histories.