RESUMO
BACKGROUND: Volatile oil from fresh Clausena lansium (Lour.) Skeels (Rutaceae) (common name Wampee) has been previously extracted by our group from fresh C. lansium leaf and its components were qualitative and quantitatively analyzed by GC-MS. It altered the cell membrane permeability of Staphylococcus aureus and reduced the levels of inflammation factors. However, previous in vivo reports on the anti-inflammatory and the antibacterial properties against S. aureus are scarce. HYPOTHESIS/PURPOSE: To evaluate the protective in vivo effects of Wampee leaves volatile oil emulsion (WVOE) against S. aureus-induced pneumonia and elucidate the underlying mechanisms of action. METHODS: Wild-type and nucleotide oligomerization domain-like receptor protein 3 (NLRP3)-deficient mice were used. Mice were treated with WVOE for 7 days, and subjected to S. aureus infection by nasal administration on day 5 for 48 h. Lung and blood samples were collected for assessing lung damage and protein abundance. Lung bacterial load, wet/dry ratio, C-reactive protein (CRP) levels, inflammatory cytokines secretion, and lung histopathological injury were examined. RESULTS: WVOE effectively reduced lung bacterial load, wet/dry ratio, and CRP levels increased following S. aureus infection in mice. WVOE decreased the secretion of inflammatory cytokines (IL-6 and TNF-α) and lung histopathological injury, and suppressed the NF-κB pathway and NLRP3 inflammasome activation. NLRP3-/- mice exhibited lower bacterial load, inflammatory cytokines levels and lung histopathological injury compared with mice in the model group. Autophagy was enhanced in S. aureus-infected mice, with higher levels of p-mTOR, Beclin-1, Atg 16L1, Atg7, p62, p-p62, and LC3II. WVOE administration restored the autophagy related protein levels. Autophagy was inhibited in NLRP3-/- mice of the control and model groups, and WVOE lost its ability to regulate the autophagy-related proteins enhanced upon S. aureus infection. WVOE enhanced autophagy to alleviate lung injury by inhibiting NLRP3-targeted P62. Furthermore, compared with the 3MA + model group, WVOE reduced the bacterial load and CRP levels, pulmonary septa narrowing, and congestion. NLRP3 protein expression increased due to autophagy inhibition. WVOE exerted a pharmacological effect through the PI3K/AKT/mTOR pathway. CONCLUSION: WVOE regulated the PI3K/AKT/mTOR pathway and enhanced autophagy, with NLRP3 playing a crucial role. WVOE exhibited protective effects against S. aureus-induced pneumonia by inhibiting NLRP3 inflammasome activation and enhancing autophagy. These findings expand the understanding of antibacterial properties of WVOE, and provide novel insights into the therapeutic potential of WVOE in managing S. aureus infections.
RESUMO
Multiple myeloma (MM) remains an incurable hematological malignancy. Despite tremendous advances in the treatment, about 10% of patients still have very poor outcomes with median overall survival less than 24 months. Our study aimed to underscore the critical mechanisms pertaining to the rapid disease progression and provide novel therapeutic selection for these ultra-high-risk patients. We utilized single-cell transcriptomic sequencing to dissect the characteristic bone marrow niche of patients with survival of less than two years (EM24). Notably, an enrichment of LILRB4high pre-matured plasma-cell cluster was observed in the patients in EM24 compared to patients with durable remission. This cluster exhibited aggressive proliferation and drug-resistance phenotype. High-level LILRB4 promoted MM clonogenicity and progression. Clinically, high expression of LILRB4 was correlated with poor prognosis in both newly diagnosed MM patients and relapsed/refractory MM patients. The ATAC-seq analysis identified that high chromosomal accessibility caused the elevation of LILRB4 on MM cells. CRISPR-Cas9 deletion of LILRB4 alleviated the growth of MM cells, inhibited the immunosuppressive function of MDSCs, and further rescued T cell dysfunction in MM microenvironment. The more infiltration of myeloid-derived suppressive cells (MDSCs) was observed in EM24 patients as well. Therefore, we innovatively generated a TCR-based chimeric antigen receptor (CAR) T cell, LILRB4-STAR-T. Cytotoxicity experiment demonstrated that LILRB4-STAR-T cells efficaciously eliminated tumor cells and impeded MDSCs function. In conclusion, our study elucidates that LILRB4 is an ideal biomarker and promising immunotherapy target for high-risk MM. LILRB4-STAR-T cell immunotherapy is promising against tumor cells and immunosuppressive tumor microenvironment in MM.
RESUMO
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive liver malignancy with limited treatment options and a dismal prognosis. The tumor immune microenvironment (TIME) is crucial for iCCA progression, yet its comprehensive characterization remains incomplete. This study utilized mass cytometry by time of flight (CyTOF) to comprehensively analyze immune cell populations in fresh iCCA tumor samples and adjacent peritumor liver tissues. Notably, NK cell percentages significantly decreased in iCCA lesions compared to peritumor liver tissues. Conversely, an enrichment of immunosuppressive CD39+Foxp3+CD4+ regulatory T cells (CD39+T-regs) and exhausted-like CD8+T cells (with pronounced CD39 and PD-1 expression) within TIME was identified and confirmed by multiplex immunofluorescence staining in an independent patient cohort (n = 140). Crucially, tumor-infiltrating CD39+T-regs and CD39+PD-1+CD8+T cells emerged as independent prognostic indicators associated with an unfavorable prognosis in iCCA. These findings unveil the intricate immune landscape within iCCA, offering valuable insights for disease management and novel cancer immunotherapies.
RESUMO
This study aimed to develop a suitable dosage form of volatile oil from wampee leaves and to explore its antibacterial mechanism in vitro. The chemical composition of the volatile oil from wampee leaves was determined by gas chromatography-mass spectrometry (GC-MS). Different microemulsion ratios were tested and their stabilities were investigated to determine the optimal ratio. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the wampee leaves volatile oil emulsion (WVOE) against Salmonella typhimurium (S. typhimurium) and Staphylococcus aureus (S. aureus) were determined using double-dilution and plate-counting methods, respectively. Morphological changes in these two bacteria were observed using scanning electron microscopy. Death, ultrastructural morphology, and biofilm formation were also assessed for S. aureus. Finally, we established an S. aureus-infected Lewis lung carcinoma (LLC) cell model to evaluate the protective effects of the volatile oil emulsion and the associated mechanisms. The volatile oil extracted from wampee leaves contained 37 compounds, of which 96.49% were aromatic hydrocarbons, terpenoids, and their oxygen-containing derivatives. The emulsion was most stable at 1:1 in the oil phase and 1:9 in the water phase. WVOE had poor antibacterial activity against S. typhimurium, but the MIC and MBC against S. aureus were 312.5 and 2,500 µg/mL, respectively. S. aureus survival rates were 84.6%, 14.5%, and 12.8% in the 1/2, 1, and 4 × MIC groups, respectively, compared with 97.2% in the control group. S. typhimurium survival was not affected by WVOE treatment. WVOE administration induced cavity formation and abnormal binary fission, and significantly inhibited biofilm formation in S. aureus cells. The WVOE notably reduced the number of S. aureus and inhibited TLR4, NLRP3, NF-κB, IL-6, IL-18, and TNF-α gene expression in S. aureus-infected LLC cells. The WVOE had a significant inhibitory effect on S. aureus and altered its cell membrane permeability. Moreover, it alleviated inflammation by inhibiting the NF-κB-NLRP3 pathway in S. aureus-infected LLC cells.
RESUMO
A vector optical field with inhomogeneous spatial polarization distribution offers what we believe to be a new paradigm to form controllable filaments. However, it is challenging to steer multiple performances (e.g. number, orientation, and interval) of filaments in transparent nonlinear media at one time. Herein, we theoretically self-design and generate a kind of believed to be novel ellipticity and orientation co-variant vector optical field to interact with Kerr medium to solve this issue. The collapsing behaviors of such a new hybrid vector optical field reveal that, by judiciously adjusting the inherent topological charge and initial phase of incident optical field, we are able to give access to stable collapsing filamentation with tunable numbers, orientations and interval. Additionally, the collapsing patterns presented are immune nearly to the extra random noise. The relevant mechanism behind the collapse of the vector optical field is elucidated as well. The findings in this work may have huge potential in optical signal processing, laser machining, and other related applications.
RESUMO
In order to study the prevention and control EHEC disease measures in poultry, the infection process and development of this disease and the pathological changes of various organs were to be observed. In this study, chickens were infected with different doses of enterohemorrhagic Escherichia coli (EHEC) O157:H7 using different routes of administration to establish EHEC broiler model. A total of 195 14-day-old broilers were randomly divided into 13 groups: including control group, Enema-drip groups (1010, 1011, 1012, 1013 CFUs E. coli O157:H7), gavage groups (P.O) (1011, 1012, 1013, 1014 CFUs E. coli O157:H7), and intraperitoneal injection group (I.P.) (108, 109, 1010, 1011 CFUs E. coli O157:H7). Escherichia coli (E. coli) was given using enema-drip, gavage or intraperitoneal infection. Then the feed intake, weight changes, stool and clinical symptoms of the chicks were recorded during the experiment. 7 d after E. coli infection, blood was collected from the jugular vein and serological tests were carried out. The liver, spleen, and colon of the chicks were extracted to get the organ index, bacteria load, and their histopathological changes. After infection with E. coli, some chicks feces were green or red watery stool, sometimes accompanied by foam, and the material to weight ratio of broilers in I.P. group increased significantly (P < 0.05), the 108 CFUs group were 1.3 times as large as control group. Three modeling methods can result in abnormal serum lipid metabolism and liver function indexes (increase of AST, TBA, T-Bil and TC level; decrease of ALB, TG, and TP level). Infection of chicks with O157:H7 by all 3 methods resulted in its detection in the liver, spleen, and colon. Three modeling methods significantly decreased liver index, and inflammatory cell infiltration and hyperemia were observed in liver. The spleen index in E. coli broilers by gavage and enema-drip was significantly decreased, splenic hyperemia and periarteriolar hyalinosis were observed. The spleen was enlarged with purplish-black spheroids in I.P. group broilers, and the spleen histological changes was more serious. The colon villi of broilers in gavage and enema-drip groups were thinner, more prone to rupture, intestinal lamina propria hyperemia, and inflammatory cell infiltration. Moreover, the number of goblet cells in the mucosal epithelium increased. E. coli O157:H7 can induce liver, spleen and intestinal damage and reduce growth performance of chicks. By comparing these 3 methods, we found that chicks infected with O157:H7 by gavage had more severe liver and intestinal damage, the enema-drip method caused most serious intestinal damage, and I.P. method significantly damaged the liver and spleen of chickens.
Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Escherichia coli O157 , Hiperemia , Animais , Galinhas , Hiperemia/veterinária , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologiaRESUMO
The male neonate in this case study was admitted to the hospital at 15 hours of age due to respiratory distress for 15 hours and poor response for 3 hours after resuscitation from asphyxia. The neonate was highly unresponsive, with central respiratory failure and seizures. Serum ammonia was elevated (>1 000 µmol/L). Blood tandem mass spectrometry revealed a significant decrease in citrulline. Rapid familial whole genome sequencing revealed OTC gene mutations inherited from the mother. Continuous hemodialysis filtration and other treatments were given. Neurological assessment was performed by cranial magnetic resonance imaging and electroencephalogram. The neonate was diagnosed with ornithine transcarbamylase deficiency combined with brain injury. He died at 6 days of age after withdrawing care. This article focuses on the differential diagnosis of neonatal hyperammonemia and introduces the multidisciplinary management of inborn error of metabolism.
Assuntos
Hiperamonemia , Doença da Deficiência de Ornitina Carbomoiltransferase , Humanos , Recém-Nascido , Masculino , Citrulina , Eletroencefalografia , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , ConvulsõesRESUMO
To explore the action time and molecular mechanism underlying the effect of acetaminophen (APAP) on liver injury. APAP was used to establish drug-induced liver injury (DILI) model in mice. Mice in the model group were intraperitoneally injected 300 mg/kg APAP for 6, 12, and 24 h respectively, and control group mice were given the same volume of normal saline. The mice were anesthetized through intravenous injection of sodium pentobarbital at 6, 12, and 24 h after APAP poisoning. Analysis of ALT, AST and ALP in serum, liver histopathological observation, oxidative damage and western blot were performed. The livers in APAP exposed mice were pale, smaller, with a rough texture, and poorly arranged cells. Lesions, large areas of hyperemia, inflammation, swelling, poorly cell arrangement, necrosis, and apoptosis of liver cells were obvious in the liver tissue sections. Serum ALT, AST and ALP levels were significantly enhanced at 12 h of APAP adminstration mice than that of in control group mice (Pï¼0.05). The histopathological alterations and proinflammatory cytokines (IL-1ß, TNF-α and IL-6) levels were most severe at 12 h of APAP-induced hepatotoxicity. APAP treatment induced oxidative stress by decreasing hepatic activities of superoxide dismutase (SOD) and glutathione (GSH) (Pï¼0.05), and enhancing malondialdehyde (MDA) content (Pï¼0.05). Moreover, APAP inhibited erythroid 2-related factor 2 (Nrf2) antioxidative pathway with decreased of Nrf2 and HO-1 proteins levels. Furthermore, APAP aggravated the activation of NLRP3 inflammasome by increasing of NLRP3, caspase-1, ASC, IL-1ß and IL-18 proteins levels. Finally, APAP further significantly activated the toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. This study demonstrated that APAP-induced hepatotoxicity by inhibiting of Nrf2 antioxidative pathway and promoting TLR4-NF-κB-MAPK inflammatory response and NLRP3 inflammasome activation.
Assuntos
Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Inflamassomos/metabolismo , Fígado , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismoRESUMO
Heat stress (HS) affects poultry production and welfare, causing enormous damage to poultry. Resveratrol, an antioxidant and anti-inflammatory natural plant polyphenol, is widely used in agriculture for the prevention of oxidative stress-related diseases. This study aimed to explore the effects and potential mechanism of resveratrol on liver oxidative damage in heat-stressed broilers. Sixty SPF chickens were randomly divided into control, heat stress (HS) and HS+ resveratrol (resveratrol) groups. Broilers were exposed to 35 ± 2 â (8 h/d) for 7 consecutive days to induce HS, and the other 16 h/d were kept at 23 ± 2 â, similar to the control group. Broilers received 400 mg/kg resveratrol in the basic diet 2 days before exposure to HS and for the following 7 days. The results showed that resveratrol improved growth performance by increasing the average daily gain (ADG) and reducing the feed conversion ratio (FCR), compared with the HS group. Heat stress reduced liver weight and index, increased inflammatory cell infiltration in the liver, enhanced serum AST levels, and decreased TP and ALB II levels, which resulted in liver injury in broilers, and resveratrol effectively alleviated liver injury. Moreover, supplementation with resveratrol enhanced the activities of liver antioxidant enzymes resulting in higher GPX and SOD levels than those in the heat-stressed broilers, and decreased MDA levels. Furthermore, resveratrol alleviated liver oxidative stress by activating the gene and protein levels of Nrf2 and HO-1, enhancing NQO1 and SOD1 gene levels, and decreasing protein levels of HSP70, p62, and Keap1, and thereby alleviated the liver injury of heat-stressed broilers. Compared with the HS group, Nrf2 immunofluorescence was significantly up-regulated in the livers of resveratrol group. These results suggest that resveratrol can enhance the liver antioxidant function by activating the Nrf2-Keap1 signaling pathway to promote growth performance in broilers under HS.
Assuntos
Antioxidantes , Suplementos Nutricionais , Animais , Resveratrol/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Galinhas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Dieta/veterinária , Estresse Oxidativo , Fígado/metabolismo , Resposta ao Choque Térmico , Transdução de Sinais , Ração Animal/análiseRESUMO
Cytomegalovirus (CMV) infection remains a major cause of mortality after hematopoietic stem cell transplantation (HSCT). Current treatments, including antiviral drugs and adoptive cell therapy with CMV-specific cytotoxic T lymphocytes (CTLs), only show limited benefits in patients. T-cell receptor (TCR)-T cell therapy offers a promising option to treat CMV infections. Here, using tetramer-based screening and single-cell TCR cloning technologies, we identified various CMV antigen-specific TCRs from healthy donors, and generated TCR-T cells targeting multiple pp65 epitopes corresponding to three major HLA-A alleles. The TCR-T cells showed efficient cytotoxicity toward epitope-expressing target cells in vitro. After transfer into immune-deficient mice bearing pp65+ HLA+ tumor cells, TCR-T cells induced dramatic tumor regression and exhibited long-term persistence. In a phase I clinical trial (NCT04153279), CMV TCR-T cells were applied to treat patients with CMV reactivation after HSCT. Except one patient who withdrew at early treatment stage, all other six patients were well-tolerated and achieved complete response (CR), no more than grade 2 cytokine release syndrome (CRS) and other adverse events were observed. CMV TCR-T cells persisted up to 3 months. Among them, two patients have survived for more than 1 year. This study demonstrates the great potential in the treatment and prevention of CMV infection following HSCT or other organ transplantation.
Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Animais , Antivirais , Linfócitos T CD8-Positivos , Ensaios Clínicos Fase I como Assunto , Citomegalovirus , Infecções por Citomegalovirus/etiologia , Infecções por Citomegalovirus/terapia , Epitopos , Antígenos HLA-A , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Camundongos , Fosfoproteínas/genética , Receptores de Antígenos de Linfócitos T/genética , Proteínas da Matriz ViralRESUMO
Air pollution, via ambient PM2.5, is a big threat to public health since it associates with increased hospitalisation, incidence rate and mortality of cardiopulmonary injury. However, the potential mediators of pulmonary injury in PM2.5 -induced cardiovascular disorder are not fully understood. To investigate a potential cross talk between lung and heart upon PM2.5 exposure, intratracheal instillation in vivo, organ culture ex vivo and human bronchial epithelial cells (Beas-2B) culture in vitro experiments were performed respectively. The exposed supernatants of Beas-2B were collected to treat primary neonatal rat cardiomyocytes (NRCMs). Upon intratracheal instillation, subacute PM2.5 exposure caused cardiac dysfunction, which was time-dependent secondary to lung injury in mice, thereby demonstrating a cross-talk between lungs and heart potentially mediated via small extracellular vesicles (sEV). We isolated sEV from PM2.5 -exposed mice serum and Beas-2B supernatants to analyse the change of sEV subpopulations in response to PM2.5 . Single particle interferometric reflectance imaging sensing analysis (SP-IRIS) demonstrated that PM2.5 increased CD63/CD81/CD9 positive particles. Our results indicated that respiratory system-derived sEV containing miR-421 contributed to cardiac dysfunction post-PM2.5 exposure. Inhibition of miR-421 by AAV9-miR421-sponge could significantly reverse PM2.5 -induced cardiac dysfunction in mice. We identified that cardiac angiotensin converting enzyme 2 (ACE2) was a downstream target of sEV-miR421, and induced myocardial cell apoptosis and cardiac dysfunction. In addition, we observed that GW4869 (an inhibitor of sEV release) or diminazene aceturate (DIZE, an activator of ACE2) treatment could attenuate PM2.5 -induced cardiac dysfunction in vivo. Taken together, our results suggest that PM2.5 exposure promotes sEV-linked miR421 release after lung injury and hereby contributes to PM2.5 -induced cardiac dysfunction via suppressing ACE2.
Assuntos
Poluição do Ar , Vesículas Extracelulares , Cardiopatias , Lesão Pulmonar , MicroRNAs , Poluição do Ar/análise , Enzima de Conversão de Angiotensina 2 , Animais , Camundongos , Miócitos Cardíacos , Material Particulado/efeitos adversos , RatosRESUMO
We developed a T-cell-receptor (TCR) complex-based chimeric antigen receptor (CAR) named Synthetic TCR and Antigen Receptor (STAR). Here, we report pre-clinical and phase I clinical trial data (NCT03953599) of this T-cell therapy for refractory and relapsed (R/R) B-cell acute lymphoblastic leukemia (B-ALL) patients. STAR consists of two protein modules each containing an antibody light or heavy chain variable region and TCR α or ß chain constant region fused to the co-stimulatory domain of OX40. T-cells were transduced with a STAR-OX40 lentiviral vector. A leukemia xenograft mouse model was used to assess the STAR/STAR-OX40 T cell antitumor activity. Eighteen patients with R/R B-ALL were enrolled into the clinical trial. In a xenograft mouse model, STAR-T-cells exhibited superior tumor-specific cytotoxicity compared with conventional CAR-T cells. Incorporating OX40 into STAR further improved the proliferation and persistence of tumor-targeting T-cells. In our clinical trial, 100% of patients achieved complete remission 4 weeks post-STAR-OX40 T-cell infusion and 16/18 (88.9%) patients pursued consolidative allogeneic hematopoietic stem cell transplantation (allo-HSCT). Twelve of 16 patients (75%) remained leukemia-free after a median follow-up of 545 (433-665) days. The two patients without consolidative allo-HSCT relapsed on Day 58 and Day 186. Mild cytokine release syndrome occurred in 10/18 (55.6%) patients, and 2 patients experienced grade III neurotoxicity. Our preclinical studies demonstrate super anti-tumor potency of STAR-OX40 T-cells compared with conventional CAR-T cells. The first-in-human clinical trial shows that STAR-OX40 T-cells are tolerable and an effective therapeutic platform for treating R/R B-ALL.
Assuntos
Linfoma de Burkitt , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Doença Aguda , Animais , Antígenos CD19 , Humanos , Imunoterapia Adotiva , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos TRESUMO
BACKGROUND: The underlying cause of neurological sequelae after immature cerebral hypoxia-ischaemia (HI) white matter injury is impaired myelination. Previous studies have indicated that astrocyte activation is closely related to impaired myelination. However, the mechanism of reactive gliosis in white matter injury post-HI remains poorly understood. METHODS: Studies using adult ischaemic animal models demonstrated that hypoxia inducible factor-1α (HIF-1α) expression was involved in the formation of reactive astrocytes. Here, we investigated the temporal expression of HIF-1α and its impact on reactive gliosis and further myelination using a perinatal HI white matter injury model induced in rats at postnatal day 3. The temporal pattern of HIF-1α expression post-HI injury was tested by western blotting and immunofluorescence. Rats were treated with a HIF-1α inhibitor at 72 hours post-HI injury. Reactive gliosis and myelination were assessed with western blotting, immunofluorescence and electron microscopy, and neurological functions were examined by behavioural testing. RESULTS: Our results showed that the expression of HIF-1α was upregulated in neurons at 24 hours and in astrocytes at 7 days post-HI. Inhibiting delayed HIF-1α expression post-HI injury could restrain reactive gliosis, ameliorate hypomyelination, and improve the performance of rats in the Morris water maze test. CONCLUSIONS: Our findings suggest that a delayed increase in HIF-1α in astrocytes is involved in glial scar formation and leads to arrested oligodendrocyte maturation, impaired myelination, and long-term neurological function after experimental white matter injury in immature rats.
RESUMO
Transceiving ultra-weak sound typically relies on signal pre-amplification at the transmitting end via active electro-acoustic devices, which inherently perturbs the environment in the form of noise that inevitably leads to information leakage. Here we demonstrate a passive remote-whispering metamaterial (RWM) enabling weak airborne sound at audible frequencies to reach unprecedented signal enhancement without altering the detected ambient soundscape, which is based on the extraordinary scattering properties of a metamaterial formed by a pair of self-resonating subwavelength Mie meta-cavities, constituting the acoustic analogy of Förster resonance energy transfer. We demonstrate efficient non-radiative sound transfer over distances hundreds times longer than the radius of the meta-cavities, which enables the RWM to recover weak sound signals completely overwhelmed by strong noise with enhanced signal-to-noise ratio from -3 dB below the detection limit of 0 dB in free space to 17.7 dB.
RESUMO
Chimeric antigen receptor T (CAR-T) cell therapies have demonstrated high response rate and durable disease control for the treatment of B cell malignancies. However, in the case of solid tumors, CAR-T cells have shown limited efficacy, which is partially attributed to intrinsic defects in CAR signaling. Here, we construct a double-chain chimeric receptor, termed as synthetic T cell receptor (TCR) and antigen receptor (STAR), which incorporates antigen-recognition domain of antibody and constant regions of TCR that engage endogenous CD3 signaling machinery. Under antigen-free conditions, STAR does not trigger tonic signaling, which has been reported to cause exhaustion of traditional CAR-T cells. Upon antigen stimulation, STAR mediates strong and sensitive TCR-like signaling, and STAR-T cells exhibit less susceptibility to dysfunction and better proliferation than traditional 28zCAR-T cells. In addition, STAR-T cells show higher antigen sensitivity than CAR-T cells, which holds potential to reduce the risk of antigen loss-induced tumor relapse in clinical use. In multiple solid tumor models, STAR-T cells prominently outperformed BBzCAR-T cells and generated better or equipotent antitumor effects to 28zCAR-T cells without causing notable toxicity. With these favorable features endowed by native TCR-like signaling, STAR-T cells may provide clinical benefit in treating refractory solid tumors.
Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T , Linfócitos TRESUMO
Chimeric antigen receptor (CAR)-T cell therapy has achieved successful outcomes against hematological malignancies and provided a new impetus for treating solid tumors. However, the efficacy of CAR-T cells for solid tumors remains unsatisfactory. The tumor microenvironment has an important role in interfering with and inhibiting the effector function of immune cells, among which upregulated inhibitory checkpoint receptors, soluble suppressive cytokines, altered chemokine expression profiles, aberrant vasculature, complicated stromal composition, hypoxia and abnormal tumor metabolism are major immunosuppressive mechanisms. In this review, we summarize the inhibitory factors that affect the function of CAR-T cells in tumor microenvironment and discuss approaches to improve CAR-T cell efficacy for solid tumor treatment by targeting those barriers.
Assuntos
Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Quimiocinas/metabolismo , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Neoplasias/irrigação sanguínea , Resultado do TratamentoRESUMO
Endometrial receptivity has become the main cause of in vitro fertilization and pregnancy outcomes in infertile patients,bringing large psychological damage and economic loss to the patients and their family. In recent years,the role of non-coding RNA has increasingly been recognized. The relationship between non-coding RNA and endometrial receptivity is reviewed in this article.
Assuntos
Endométrio/fisiologia , RNA não Traduzido/genética , Implantação do Embrião , Feminino , Fertilização in vitro , Humanos , Gravidez , Resultado da GravidezRESUMO
Photoacoustic imaging is a hybrid biomedical imaging technique, combining rich optical contrasts and good acoustic resolution in deep tissues. As a noninvasive and nonionized imaging method, photoacoustic imaging has shown great potentials in biomedicine in the past decade. In this review, we give a brief introduction of the physical principle and three major implementations of photoacoustic imaging. Then, we present pictures of some recent progress about the extraction of new imaging parameters from photoacoustic radio-frequency signals. These parameters are highly associated with the tissue microstructure characteristics, including characteristic size, number density, and elasticity. This information could give us insight into various properties of tissue in-depth and be applied to tissue classification for basic research and clinical settings.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas , Ondas de Rádio , Animais , Elasticidade , HumanosRESUMO
Macrophages within tissues display a strong plastic ability in respond to environmental cues in both physiologic influences and disease. However, the macrophage phenotype and its distribution in the bone marrow biopsies (BMB) samples of human acute leukemia (AL) remain poorly understood. In this study, 97 BMB samples of patients with acute leukemia and 30 iron-deficiency anemias (IDA) as control group were evaluated with immunohistochemistry. In comparison with controls, the counts of CD68+, CD163+, and CD206+macrophages were remarkably increased in BMB samples of acute leukemia (P < 0.01), as well as their infiltration density was roaring up-regulation (P < 0.01). The expression levels of CD68+, CD163+, and CD206+macrophages were decreased in patients with complete remission, but there still existed statistically significant contrast to the control group (P < 0.01). The ratios of the CD163-positive cells or CD206-positive cells to CD68-positive cells were most prevalent in the BMB samples of human acute leukemia compared with the control group (P < 0.01), which support that macrophages were polarized to M2 macrophages.
Assuntos
Antígenos de Diferenciação/metabolismo , Medula Óssea , Leucemia , Macrófagos , Proteínas de Neoplasias/metabolismo , Doença Aguda , Adolescente , Adulto , Idoso , Biópsia , Medula Óssea/metabolismo , Medula Óssea/patologia , Feminino , Humanos , Leucemia/metabolismo , Leucemia/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-IdadeRESUMO
Unlike hematological malignancies, solid tumors have proved to be less susceptible to chimeric antigen receptor (CAR)-T cell therapy, which is partially caused by reduced accumulation of therapeutic T cells in tumor site. Since efficient trafficking is the precondition and pivotal step for infused CAR-T cells to exhibit their anti-tumor function, strategies are highly needed to improve the trafficking ability of CAR-T cells for solid tumor treatment. Here, based on natural lymphocyte chemotaxis theory and characteristics of solid tumor microenvironments, we explored the possibility of enhancing CAR-T cell trafficking by using chemokine receptors. Our study found that compared with other chemokines, several CXCR2 ligands showed relatively high expression level in human hepatocellular carcinoma tumor tissues and cell lines. However, both human peripheral T cells and hepatocellular carcinoma tumor infiltrating T cells lacked expression of CXCR2. CXCR2-expressing CAR-T cells exhibited identical cytotoxicity but displayed significantly increased migration ability in vitro. In a xenograft tumor model, we found that expressing CXCR2 in CAR-T cells could significantly accelerate in vivo trafficking and tumor-specific accumulation, and improve anti-tumor effect of these cells.