Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 53(28): 11895-11902, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953548

RESUMO

The energy difference between different spin states of systems with transition metals is an outstanding challenge for electronic structure calculation methods. The small energy difference between high- and low-spin states in spin-crossover systems makes most post-Hartree-Fock or density functional theory-based methods provide inaccurate values. A test case of twenty systems showing spin transitions has been used to evaluate the accuracy of a new family of training meta-GGA (Generalized Gradient Approximation) functionals. One of the functionals of this new family provides comparable or even better values than the best functional reported so far for this type of system, the TPSSh hybrid meta-GGA functional, but without having to use the exact exchange term. It also improves the results obtained with the r2SCAN meta-GGA functional, which was the best alternative to the TPSSh hybrid functional. This makes it possible to calculate the spin energetics of any kind of compound, especially large systems or periodic structures where the exact exchange requires large computational resources.

2.
Inorg Chem ; 63(29): 13338-13345, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38976861

RESUMO

Spin energetics is one of the biggest challenges associated with energy calculations for electronic structure methods. The energy differences of the spin states in spin-crossover compounds are very small, making them one of the most difficult systems to calculate. Few methods provide accurate results for calculating these energy differences. In addition, studies have usually focused on calculating energetics of single molecules, while spin-crossover properties are usually experimentally studied in the solid phase. In this paper, we have used periodic boundary conditions employing methods based on density functional theory to calculate the high- and low-spin energy differences for a test case of 20 extended systems. Compounds with different metals and ligands have been selected, and the results indicate that a semiquantitative description of the energy differences can be obtained with the combination of geometry optimization using the PBE functional including many-body dispersion approach and the use of meta-GGA functionals, such as r2SCAN but especially KTBM24, for the energy calculation. Other hybrid functionals, such as TPSSh, give generally good results, but the calculation of the exact exchange with periodic boundary conditions involves a huge increase in computer time and computational resources. It makes the proposed nonhybrid functional approach (KTBM24//PBE+MB) a great advantage for the study of periodic systems.

3.
Inorg Chem ; 63(28): 12858-12869, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934463

RESUMO

The impact that the anion and alkyl group has on the electronic structures and magnetic properties of four mononuclear Mn(III) complexes is explored in [Mn(salEen-Br)2]Y (salEen-Br = 2-{[2-(ethylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 1 and BF4-·1/3CH2Cl2 2) and [Mn(salBzen-Br)2]Y (salBzen-Br = 2-{[2-(benzylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 3 and BF4- 4). X-ray structures of [Mn(salEen-Br)2]ClO4·0.45C6H14 1-hexane, [Mn(salEen-Br)2]BF4·0.33CH2Cl2·0.15C6H14 2-dcm-hexane, and 3-4 reveal that they crystallize in ambient conditions in the monoclinic P21/c space group. Lowering the temperature, 2-dcm-hexane uniquely exhibits a structural phase transition toward a monoclinic P21/n crystal structure determined at 100 K with the unit cell trebling in size. Remarkably, at room temperature, the axially elongated Jahn-Teller axis in 2-dcm-hexane is poorly defined but becomes clearer at low temperature after the phase transition. Magnetic susceptibility measurements of 1-4 reveal that only 3 and 4 show slow relaxation of magnetization with Δeff/kB = 27.9 and 20.7 K, implying that the benzyl group is important for observing single-molecule magnet (SMM) properties. Theoretical calculations demonstrate that the alkyl group subtly influences the orbital levels and therefore very likely the observed SMM properties.

4.
Nat Commun ; 15(1): 790, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278792

RESUMO

Electric fields have been highlighted as a smart reagent in nature's enzymatic machinery, as they can directly trigger or accelerate chemical processes with stereo- and regio-specificity. In enzymatic catalysis, controlled mass transport of chemical species is also key in facilitating the availability of reactants in the active reaction site. However, recent progress in developing a clean catalysis that profits from oriented electric fields is limited to theoretical and experimental studies at the single molecule level, where both the control over mass transport and scalability cannot be tested. Here, we quantify the electrostatic catalysis of a prototypical Huisgen cycloaddition in a large-area electrode surface and directly compare its performance to the conventional Cu(I) catalysis. Our custom-built microfluidic cell enhances reagent transport towards the electrified reactive interface. This continuous-flow microfluidic electrostatic reactor is an example of an electric-field driven platform where clean large-scale electrostatic catalytic processes can be efficiently implemented and regulated.


Assuntos
Microfluídica , Eletricidade Estática , Catálise , Domínio Catalítico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA