Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(4): 1987-2001, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30462297

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) transcribes a long noncoding polyadenylated nuclear (PAN) RNA, which promotes the latent to lytic transition by repressing host genes involved in antiviral responses as well as viral proteins that support the latent state. KSHV also expresses several early proteins including ORF57 (Mta), a member of the conserved multifunctional ICP27 protein family, which is essential for productive replication. ORF57/Mta interacts with PAN RNA via a region termed the Mta responsive element (MRE), stabilizing the transcript and supporting nuclear accumulation. Here, using a close homolog of KSHV ORF57 from herpesvirus saimiri (HVS), we determined the crystal structure of the globular domain in complex with a PAN RNA MRE, revealing a uracil specific binding site that is also conserved in KSHV. Using solution NMR, RNA binding was also mapped within the disordered N-terminal domain of KSHV ORF57, and showed specificity for an RNA fragment containing a GAAGRG motif previously known to bind a homologous region in HVS ORF57. Together these data located novel differential RNA recognition sites within neighboring domains of herpesvirus ORF57 homologs, and revealed high-resolution details of their interactions with PAN RNA, thus providing insight into interactions crucial to viral function.


Assuntos
Herpesvirus Humano 8/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas Virais Reguladoras e Acessórias/genética , Sítios de Ligação/genética , Regulação Viral da Expressão Gênica , Herpesvirus Saimiriíneo 2/genética , Humanos , Proteínas Imediatamente Precoces/genética , Motivos de Nucleotídeos/genética , RNA Mensageiro/genética
2.
mBio ; 9(3)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921674

RESUMO

The UL69 protein from human cytomegalovirus (HCMV) is a multifunctional regulatory protein and a member of the ICP27 protein family conserved throughout herpesviruses. UL69 plays many roles during productive infection, including the regulation of viral gene expression, nuclear export of intronless viral RNAs, and control of host cell cycle progression. Throughout the ICP27 protein family, an ability to self-associate is correlated with the functions of these proteins in transactivating certain viral genes. Here, we determined the domain boundaries of a globular ICP27 homology domain of UL69, which mediates self-association, and characterized the oligomeric state of the isolated domain. Size exclusion chromatography coupled with multiangle light scattering (SEC-MALS) revealed that residues 200 to 540 form a stable homo-tetramer, whereas a shorter region comprising residues 248 to 536 forms a homo-dimer. Structural analysis of the UL69 tetramer by transmission electron microscopy (TEM) revealed a dimer-of-dimers three-dimensional envelope with bridge features likely from a region of the protein unique to betaherpesviruses. The data provide a structural template for tetramerization and improve our understanding of the structural diversity and features necessary for self-association within UL69 and the ICP27 family.IMPORTANCE Human cytomegalovirus (HCMV) infection is widespread in the human population but typically remains dormant in an asymptomatic latent state. HCMV causes disease in neonates and adults with suppressed or impaired immune function, as the virus is activated into a lytic state. All species of herpesvirus express a protein from the ICP27 family which functions as a posttranscriptional activator in the lytic state. In HCMV, this protein is called UL69. The region of sequence conservation in the ICP27 family is a folded domain that mediates protein interactions, including self-association and functions in transactivation. All members thus far analyzed homo-dimerize, with the exception of UL69, which forms higher-order oligomers. Here, we use biochemical and structural data to reveal that UL69 forms stable tetramers composed of a dimer of dimers and determine a region essential for cross-dimer stabilization.


Assuntos
Citomegalovirus/metabolismo , Transativadores/química , Proteínas Virais/química , Sequência de Aminoácidos , Sequência Conservada , Multimerização Proteica , Estrutura Terciária de Proteína , Transativadores/ultraestrutura , Proteínas Virais/ultraestrutura
3.
Sci Rep ; 6: 21456, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902455

RESUMO

The mammalian tolloid family of metalloproteinases is essential for tissue patterning and extracellular matrix assembly. The four members of the family: bone morphogenetic protein-1 (BMP-1), mammalian tolloid (mTLD), tolloid-like (TLL)-1 and TLL-2 differ in their substrate specificity and activity levels, despite sharing similar domain organization. We have previously described a model of substrate exclusion by dimerisation to explain differences in the activities of monomeric BMP-1 and dimers of mTLD and TLL-1. Here we show that TLL-2, the least active member of the tolloid family, is predominantly monomeric in solution, therefore it appears unlikely that substrate exclusion via dimerisation is a mechanism for regulating TLL-2 activity. X-ray scattering and electron microscopy structural and biophysical analyses reveal an elongated shape for the monomer and flexibility in the absence of calcium. Furthermore, we show that TLL-2 can cleave chordin in vitro, similar to other mammalian tolloids, but truncated forms of TLL-2 mimicking BMP-1 are unable to cleave chordin. However, both the N- and C-terminal non-catalytic domains from all mammalian tolloids bind chordin with high affinity. The mechanisms underlying substrate specificity and activity in the tolloid family are complex with variation between family members and depend on both multimerisation and substrate interaction.


Assuntos
Proteína Morfogenética Óssea 1/química , Cálcio/química , Glicoproteínas/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Domínios e Motivos de Interação entre Proteínas , Metaloproteases Semelhantes a Toloide/química , Processamento Alternativo , Animais , Proteína Morfogenética Óssea 1/genética , Proteína Morfogenética Óssea 1/metabolismo , Ensaios Enzimáticos , Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Hidrodinâmica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Metaloproteases Semelhantes a Toloide/genética , Metaloproteases Semelhantes a Toloide/metabolismo
4.
Cancer Discov ; 3(12): 1378-93, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24104062

RESUMO

UNLABELLED: An emerging concept in melanoma biology is that of dynamic, adaptive phenotype switching, where cells switch from a highly proliferative, poorly invasive phenotype to a highly invasive, less proliferative one. This switch may hold significant implications not just for metastasis, but also for therapy resistance. We demonstrate that phenotype switching and subsequent resistance can be guided by changes in expression of receptors involved in the noncanonical Wnt5A signaling pathway, ROR1 and ROR2. ROR1 and ROR2 are inversely expressed in melanomas and negatively regulate each other. Furthermore, hypoxia initiates a shift of ROR1-positive melanomas to a more invasive, ROR2-positive phenotype. Notably, this receptor switch induces a 10-fold decrease in sensitivity to BRAF inhibitors. In patients with melanoma treated with the BRAF inhibitor vemurafenib, Wnt5A expression correlates with clinical response and therapy resistance. These data highlight the fact that mechanisms that guide metastatic progression may be linked to those that mediate therapy resistance. SIGNIFICANCE: These data show for the fi rst time that a single signaling pathway, the Wnt signaling pathway, can effectively guide the phenotypic plasticity of tumor cells, when primed to do so by a hypoxic microenvironment. Importantly, this increased Wnt5A signaling can give rise to a subpopulation of highly invasive cells that are intrinsically less sensitive to novel therapies for melanoma, and targeting the Wnt5A/ROR2 axis could improve the efficacy and duration of response for patients with melanoma on vemurafenib.


Assuntos
Antineoplásicos/uso terapêutico , Hipóxia Celular , Resistencia a Medicamentos Antineoplásicos , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Sulfonamidas/uso terapêutico , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Melanoma/genética , Melanoma/secundário , Melanoma Experimental , Camundongos , Camundongos Nus , Metástase Neoplásica , Fenótipo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Vemurafenib , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA