Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37508406

RESUMO

The immune system plays an important role in the skeletal system during bone repair and regeneration. The controlled release of biological factors from the immune system could facilitate and optimize the bone remodeling process through the regulation of the activities of bone cells. This study aimed to determine the effect of the controlled delivery of immunomodulatory biologicals on bone regeneration. Immunostimulatory cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN) and glucosylxanthone Mangiferin (MAG)-embedded microbeads were incubated with P. gingivalis-challenged splenocytes, or co-cultured with RAW264.7 cells. The effect of CpG ODN/MAG-containing microbeads on bone regeneration was then tested in vivo in a mouse alveolar bone defect model. The results demonstrated that MAG significantly antagonized P. gingivalis proliferation and reduced the live/dead cell ratio. After the addition of CpG ODN + MAG microbeads, anti-inflammatory cytokines IL-10 and IL-4 were upregulated on day 2 but not day 4, whereas pro-inflammatory cytokine IL-1ß responses showed no difference at both timepoints. RANKL production by splenocytes and TRAP+ cell formation of RAW264.7 cells were inhibited by the addition of CpG ODN + MAG microbeads. Alveolar bony defects, filled with CpG ODN + MAG microbeads, showed significantly increased new bone after 4 weeks. In summary, this study evaluated a new hydrogel-based regimen for the local delivery and controlled release of biologicals to repair and regenerate alveolar bony defects. The combined CpG ODN + MAG treatment may promote alveolar bone regeneration through the anti-microbial/anti-inflammatory effects and the inhibition of RANKL-mediated osteoclastogenesis.

2.
Front Microbiol ; 14: 1167160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250057

RESUMO

Diabetic retinopathy (DR) is one of the leading causes of blindness. Periodontitis is one of the highest oral incidences and has been closely related to various systemic conditions through Porphyromonas gingivalis (P. gingivalis). P. gingivalis OMVs, derived from P. gingivalis, can cause endothelial dysfunction and potentially affect microvascular diseases. Current epidemiological studies provide limited evidence suggesting that periodontitis is associated with DR. However, there is a lack of basic research elucidating how periodontitis affects the severity of DR. This study aimed to explore the potential of P. gingivalis OMVs to contribute to the pathogenesis of DR and explore how it affect the retinal microvascular endothelium. The results demonstrated that P. gingivalis OMVs accelerated the blood-retinal barrier damage in DR mice. In vitro studies showed that the expression of inflammatory factors in human retinal microvascular endothelial cells (HRMECs) was increased after P. gingivalis OMVs stimulation, and the increased reactive oxygen species production, mitochondrial dysfunction, apoptosis, and altered endothelial permeability were observed in HRMECs under P. gingivalis OMVs stimulation. In addition, we found that protease-activated receptor-2 (PAR-2) regulated OMVs-induced TNF-α, MMP-9 mRNA expression, cell death, and endothelial permeability. Overall, we suggested that P. gingivalis OMVs induced mitochondria-related cell death of HRMECs and accelerated endothelial dysfunction, thus aggravating DR, in which PAR-2 plays a potential role. This study is the first research report to delineate the potential molecular mechanism of P. gingivalis OMVs on DR pathogenesis, which uniquely focused on elucidating the possible impact of periodontal pathogen derivatives on DR progression.

3.
Cells ; 12(8)2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190018

RESUMO

Elevated osteoclast (OC)-mediated bone resorption, a common pathological feature between periodontitis and rheumatoid arthritis (RA), implicates a possible mutually shared pathogenesis. The autoantibody to citrullinated vimentin (CV), a representative biomarker of RA, is reported to promote osteoclastogenesis (OC-genesis). However, its effect on OC-genesis in the context of periodontitis remains to be elucidated. In an in vitro experiment, the addition of exogenous CV upregulated the development of Tartrate-resistant acid phosphatase (TRAP)-positive multinuclear OCs from mouse bone marrow cells and increased the formation of resorption pits. However, Cl-amidine, an irreversible pan-peptidyl arginine deiminase (PAD) inhibitor, suppressed the production and secretion of CV from RANKL-stimulated OC precursors, suggesting that the citrullination of vimentin occurs in OC precursors. On the other hand, the anti-vimentin neutralizing antibody suppressed in vitro Receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced OC-genesis. The CV-induced upregulation of OC-genesis was abrogated by the Protein kinase C (PKC)-δ inhibitor Rottlerin, accompanied by the downmodulation of OC-genesis-related genes, including Osteoclast stimulatory transmembrane protein (OC-STAMP), TRAP and Matrix Metallopeptidase 9 (MMP9) as well as extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP)-kinase phosphorylation. Elevated levels of soluble CV and vimentin-bearing mononuclear cells were found in the bone resorption lesions of periodontitis induced in mice in the absence of an anti-CV antibody. Finally, local injection of anti-vimentin neutralizing antibody suppressed the periodontal bone loss induced in mice. Collectively, these results indicated that the extracellular release of CV promoted OC-genesis and bone resorption in periodontitis.


Assuntos
Perda do Osso Alveolar , Artrite Reumatoide , Periodontite , Camundongos , Animais , Osteoclastos/metabolismo , Perda do Osso Alveolar/metabolismo , Periodontite/metabolismo , Modelos Animais de Doenças , NF-kappa B/metabolismo , Anticorpos Neutralizantes/metabolismo
4.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047666

RESUMO

Immune cell pattern-recognition receptors such as Toll-like receptors (TLRs) play important roles in the regulation of host responses to periodontal pathogens. Our previous studies have demonstrated that immune regulatory B cells were activated by TLRs and alleviated periodontitis inflammation and bone loss. The purpose of this study is to determine the role of TLR9 signaling in the activation and IL-10 production of the primed-immune B cells in vitro. Wild-type (WT) and TLR9 knockout (TLR9KO) mice (C57BL/6 background, n = 5) were pre-immunized intraperitoneally with 1 × 108 formalin-fixed P. gingivalis and boosted once with 1 × 107 formalin-fixed P. gingivalis. Isolated splenocytes and purified B cells from each mouse were cultured with 1 × 108 formalin-fixed P. gingivalis for 48 h. Immunocytochemistry was performed to detect CD45+ IL-10+ cells. Levels of IL-10 expression and secretion in splenocytes and B cells were detected using qRT-PCR and ELISA, respectively. After stimulation with fixed P. gingivalis, the percentage of CD45+ IL-10+ B cells and the level of IL-10 expression were significantly increased (p < 0.01) in splenocytes and purified B cells isolated from WT mice. However, these changes were not observed in splenocytes and purified B cells from TLR9KO mice when the cells were treated with fixed P. gingivalis. The percentage of CD45+ IL-10+ B cells was significantly reduced in splenocytes and purified B cells from TLR9KO mice compared to those from WT mice when challenged with P. gingivalis. IL-10 expression in B cells from TLR9KO mice was significantly decreased compared to those from WT mice at both the mRNA and protein levels. Additionally, P. gingivalis-induced up-regulation of TNF-α mRNA expressions were consistently observed in B cells from both WT and TLR9KO mice. P. gingivalis-induced B10 activation and IL-10 production during adaptive responses by primed B cells requires TLR9 signaling and can be achieved independent of T-cell help.


Assuntos
Interleucina-10 , Receptor Toll-Like 9 , Animais , Camundongos , Células Cultivadas , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Porphyromonas gingivalis , RNA Mensageiro/metabolismo , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/metabolismo , Linfócitos B/imunologia
5.
Eur J Oral Sci ; 131(1): e12906, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36412995

RESUMO

SARS-CoV-2, the causative agent of the debilitating COVID-19, is mainly transmitted by first infecting nose and lung epithelial cells. The mouth is also believed to be a viral portal site since certain types of oral epithelial cells were shown to express ACE2 receptor. However, it is unclear whether oral epithelial cells are directly infected by SARS-CoV-2. In this study, we addressed whether epithelial cells of the oral gingiva were susceptible to infection. Interestingly, we found that KRT5+ and KRT18+ gingival epithelial cells do not express ACE2 but highly express TMPRSS2 and Furin as well as CD147, which was proposed to be an alternative receptor for SARS-CoV-2. However, using SARS-CoV-2 pseudoviruses containing the spike protein, we observed that gingival epithelial cells were not susceptible to infection due to the lack of ACE2 expression and the inability of CD147 to mediate viral entry. These results strongly suggest that epithelial cells from the gingiva are not susceptible to SARS-CoV-2 and CD147 is not a receptor for the SARS-CoV-2 virus. The susceptibility of oral cells from other oral structures under healthy and pathological conditions still needs to be confirmed to better understand the role of the oral cavity in COVID-19 infection and transmission.


Assuntos
Basigina , Receptores de Coronavírus , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , Suscetibilidade a Doenças , Células Epiteliais/metabolismo , Gengiva , SARS-CoV-2/metabolismo , Basigina/metabolismo , Receptores de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA