Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 12(4): e1005559, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27058585

RESUMO

Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form.


Assuntos
Doença de Chagas/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Ácido N-Acetilneuramínico/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Animais , Micropartículas Derivadas de Células/metabolismo , Doença de Chagas/metabolismo , Modelos Animais de Doenças , Glicoproteínas/metabolismo , Processamento de Imagem Assistida por Computador , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Microscopia/métodos , Microscopia de Fluorescência , Mucinas/metabolismo , Neuraminidase/metabolismo , Virulência
2.
Infect Immun ; 83(5): 2099-108, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25754197

RESUMO

The trans-sialidases (TSs) from Trypanosoma cruzi, the agent of Chagas disease, are virulence factors shed to the bloodstream that induce strong alterations in the immune system. Here, we report that both enzymatically active TS (aTS) and its lectinlike isoform (iTS) disturb CD4 T cell physiology, inducing downregulation of Th1 cell functionality and in vivo cell expansion. By using ovalbumin-specific DO11.10 cells as tracers of clones developing the Th1 phenotype, we found that the infection induced significant amounts of gamma interferon (IFN-γ) but low levels of interleukin 2 (IL-2) and increased IL-4 production in vivo, in agreement with a mixed T helper response. The production of cytokines associated with the Th2 phenotype was prevented by passive transfer of anti-TS neutralizing antibodies. TSs also reduced the T cell receptor signaling as assayed by Zap-70 phosphorylation. TSs also reduced IL-2 and IFN-γ secretion, with a concomitant increase in IL-4 production and then an unbalancing of the CD4 T cell response toward the Th2 phenotype. This effect was prevented by using anti-IL-10 neutralizing antibodies or IL-10(-/-) antigen-presenting cells, supporting the subversion of this regulatory pathway. In support, TSs stimulated IL-10 secretion by antigen-presenting cells during their interaction with CD4 T cells. When polarized cells were stimulated in the presence of TSs, the secretion of IL-2 and IFN-γ was strongly downregulated in Th1 cells, while IL-2 production was upregulated in Th2 cells. Although the Th1 response is associated with host survival, it may simultaneously induce extensive damage to infected tissues. Thus, by delaying the elicitation of the Th1 response and limiting its effector properties, TSs restrain the cell response, supporting T. cruzi colonization and persistence while favoring host survival.


Assuntos
Glicoproteínas/metabolismo , Evasão da Resposta Imune , Fatores Imunológicos/metabolismo , Interleucina-10/metabolismo , Neuraminidase/metabolismo , Células Th1/imunologia , Trypanosoma cruzi/imunologia , Animais , Interferon gama/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA