Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sci Rep ; 13(1): 7024, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120613

RESUMO

ANR (AraC negative regulators) are a novel class of small regulatory proteins commonly found in enteric pathogens. Aar (AggR-activated regulator), the best-characterized member of the ANR family, regulates the master transcriptional regulator of virulence AggR and the global regulator HNS in enteroaggregative Escherichia coli (EAEC) by protein-protein interactions. On the other hand, Rnr (RegA-negative regulator) is an ANR homolog identified in attaching and effacing (AE) pathogens, including Citrobacter rodentium and enteropathogenic Escherichia coli (EPEC), sharing only 25% identity with Aar. We previously found that C. rodentium lacking Rnr exhibits prolonged shedding and increased gut colonization in mice compared to the parental strain. To gain mechanistic insights into this phenomenon, we characterized the regulatory role of Rnr in the virulence of prototype EPEC strain E2348/69 by genetic, biochemical, and human organoid-based approaches. Accordingly, RNA-seq analysis revealed more than 500 genes differentially regulated by Rnr, including the type-3 secretion system (T3SS). The abundance of EspA and EspB in whole cells and bacterial supernatants confirmed the negative regulatory activity of Rnr on T3SS effectors. We found that besides HNS and Ler, twenty-six other transcriptional regulators were also under Rnr control. Most importantly, the deletion of aar in EAEC or rnr in EPEC increases the adherence of these pathogens to human intestinal organoids. In contrast, the overexpression of ANR drastically reduces bacterial adherence and the formation of AE lesions in the intestine. Our study suggests a conserved regulatory mechanism and a central role of ANR in modulating intestinal colonization by these enteropathogens despite the fact that EAEC and EPEC evolved with utterly different virulence programs.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Animais , Camundongos , Virulência/genética , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Transcrição
2.
PLoS Pathog ; 16(8): e1008776, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845938

RESUMO

Enteroaggregative Escherichia coli (EAEC) is a diarrheagenic pathotype associated with traveler's diarrhea, foodborne outbreaks and sporadic diarrhea in industrialized and developing countries. Regulation of virulence in EAEC is mediated by AggR and its negative regulator Aar. Together, they control the expression of at least 210 genes. On the other hand, we observed that about one third of Aar-regulated genes are related to metabolism and transport. In this study we show the AggR/Aar duo controls the metabolism of lipids. Accordingly, we show that AatD, encoded in the AggR-regulated aat operon (aatPABCD) is an N-acyltransferase structurally similar to the essential Apolipoprotein N-acyltransferase Lnt and is required for the acylation of Aap (anti-aggregation protein). Deletion of aatD impairs post-translational modification of Aap and causes its accumulation in the bacterial periplasm. trans-complementation of 042aatD mutant with the AatD homolog of ETEC or with the N-acyltransferase Lnt reestablished translocation of Aap. Site-directed mutagenesis of the E207 residue in the putative acyltransferase catalytic triad disrupted the activity of AatD and caused accumulation of Aap in the periplasm due to reduced translocation of Aap at the bacterial surface. Furthermore, Mass spectroscopy revealed that Aap is acylated in a putative lipobox at the N-terminal of the mature protein, implying that Aap is a lipoprotein. Lastly, deletion of aatD impairs bacterial colonization of the streptomycin-treated mouse model. Our findings unveiled a novel N-acyltransferase family associated with bacterial virulence, and that is tightly regulated by AraC/XylS regulators in the order Enterobacterales.


Assuntos
Acetiltransferases/metabolismo , Fator de Transcrição AraC/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/patogenicidade , Regulação Bacteriana da Expressão Gênica , Acetiltransferases/genética , Acilação , Animais , Fator de Transcrição AraC/química , Fator de Transcrição AraC/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óperon , Filogenia , Conformação Proteica , Virulência
3.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32631917

RESUMO

Symptomatic and asymptomatic infection with the diarrheal pathogen enteroaggregative Escherichia coli (EAEC) is associated with growth faltering in children in developing settings. The mechanism of this association is unknown, emphasizing a need for better understanding of the interactions between EAEC and the human gastrointestinal mucosa. In this study, we investigated the role of the aggregative adherence fimbriae II (AAF/II) in EAEC adherence and pathogenesis using human colonoids and duodenal enteroids. We found that a null mutant in aafA, the major subunit of AAF/II, adhered significantly less than wild-type (WT) EAEC strain 042, and adherence was restored in a complemented strain. Immunofluorescence confocal microscopy of differentiated colonoids, which produce an intact mucus layer comprised of the secreted mucin MUC2, revealed bacteria at the epithelial surface and within the MUC2 layer. The WT strain adhered to the epithelial surface, whereas the aafA deletion strain remained within the MUC2 layer, suggesting that the presence or absence of AAF/II determines both the abundance and location of EAEC adherence. In order to determine the consequences of EAEC adherence on epithelial barrier integrity, colonoid monolayers were exposed to EAEC constructs expressing or lacking aafA Colonoids infected with WT EAEC had significantly decreased epithelial resistance, an effect that required AAF/II, suggesting that binding of EAEC to the epithelium is necessary to impair barrier function. In summary, we show that production of AAF/II is critical for adherence and barrier disruption in human colonoids, suggesting a role for this virulence factor in EAEC colonization of the gastrointestinal mucosa.


Assuntos
Adesinas de Escherichia coli/imunologia , Células Epiteliais/microbiologia , Escherichia coli/imunologia , Fímbrias Bacterianas/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Organoides/microbiologia , Adesinas de Escherichia coli/genética , Aderência Bacteriana , Colo/imunologia , Colo/metabolismo , Colo/microbiologia , Contagem de Colônia Microbiana , Duodeno/imunologia , Duodeno/metabolismo , Duodeno/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Fímbrias Bacterianas/genética , Deleção de Genes , Regulação da Expressão Gênica , Teste de Complementação Genética , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucina-2/genética , Mucina-2/imunologia , Organoides/imunologia , Organoides/metabolismo , Transdução de Sinais
4.
Sci Rep ; 10(1): 10533, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601325

RESUMO

EAEC is a common cause of diarrheal illness worldwide. Pathogenesis is believed to occur in the ileum and colon, where the bacteria adhere and form a robust aggregating biofilm. Among the multiple virulence factors produced by EAEC, the Pic serine protease has been implicated in bacterial colonization by virtue of its mucinolytic activity. Hence, a potential role of Pic in mucus barrier disruption during EAEC infection has been long postulated. In this study, we used human colonoids comprising goblet cells and a thick mucin barrier as an intestinal model to investigate Pic's roles during infection with EAEC. We demonstrated the ability of purified Pic, but not a protease defective Pic mutant to degrade MUC2. Western blot and confocal microscopy analysis revealed degradation of the MUC2 layer in colonoids infected with EAEC, but not with its isogenic EAECpic mutant. Wild-type and MUC2-knockdown colonoids infected with EAEC strains exposed a differential biofilm distribution, greater penetration of the mucus layer and increased colonization of the colonic epithelium by Wild-type EAEC than its isogenic Pic mutant. Higher secretion of pro-inflammatory cytokines was seen in colonoids infected with EAEC than EAECpic. Although commensal E. coli expressing Pic degraded MUC2, it did not show improved mucus layer penetration or colonization of the colonic epithelium. Our study demonstrates a role of Pic in MUC2 barrier disruption in the human intestine and shows that colonoids are a reliable system to study the interaction of pathogens with the mucus layer.


Assuntos
Colo/microbiologia , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Mucosa Intestinal/microbiologia , Serina Endopeptidases/metabolismo , Colo/metabolismo , Células Caliciformes/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucinas/metabolismo
5.
PLoS Negl Trop Dis ; 14(5): e0008274, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32357189

RESUMO

Multidrug-resistant Escherichia coli ST131 fimH30 responsible for extra-intestinal pathogenic (ExPEC) infections is globally distributed. However, the occurrence of a subclone fimH27 of ST131 harboring both ExPEC and enteroaggregative E. coli (EAEC) related genes and belonging to commonly reported O25:H4 and other serotypes causing bacteremia in African children remain unknown. We characterized 325 E. coli isolates causing bacteremia in Mozambican children between 2001 and 2014 by conventional multiplex polymerase chain reaction and whole genome sequencing. Incidence rate of EAEC bacteremia was calculated among cases from the demographic surveillance study area. Approximately 17.5% (57/325) of isolates were EAEC, yielding an incidence rate of 45.3 episodes/105 children-years-at-risk among infants; and 44 of isolates were sequenced. 72.7% (32/44) of sequenced strains contained simultaneously genes associated with ExPEC (iutA, fyuA and traT); 88.6% (39/44) harbored the aggregative adherence fimbriae type V variant (AAF/V). Sequence type ST-131 accounted for 84.1% (37/44), predominantly belonging to serotype O25:H4 (59% of the 37); 95.6% (35/44) harbored fimH27. Approximately 15% (6/41) of the children died, and five of the six yielded ST131 strains (83.3%) mostly (60%; 3/5) due to serotypes other than O25:H4. We report the emergence of a new subclone of ST-131 E. coli strains belonging to O25:H4 and other serotypes harboring both ExPEC and EAEC virulence genes, including agg5A, associated with poor outcome in bacteremic Mozambican children, suggesting the need for prompt recognition for appropriate management.


Assuntos
Adesinas de Escherichia coli/genética , Bacteriemia/microbiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/classificação , Fímbrias Bacterianas/genética , Genótipo , Transativadores/genética , Adolescente , Bacteriemia/epidemiologia , Criança , Pré-Escolar , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Moçambique/epidemiologia , Reação em Cadeia da Polimerase , Sorogrupo , Sequenciamento Completo do Genoma
6.
Front Microbiol ; 10: 1965, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543869

RESUMO

Bacterial pathogens utilize a myriad of mechanisms to invade mammalian hosts, damage tissue sites, and evade the immune system. One essential strategy of Gram-negative bacteria is the secretion of virulence factors through both inner and outer membranes to reach a potential target. Most secretion systems are harbored in mobile elements including transposons, plasmids, pathogenicity islands, and phages, and Escherichia coli is one of the more versatile bacteria adopting this genetic information by horizontal gene transfer. Additionally, E. coli is a bacterial species with members of the commensal intestinal microbiota and pathogens associated with numerous types of infections such as intestinal, urinary, and systemic in humans and other animals. T6SS cluster plasticity suggests evolutionarily divergent systems were acquired horizontally. T6SS is a secretion nanomachine that is extended through the bacterial double membrane; from this apparatus, substrates are conveyed straight from the cytoplasm of the bacterium into a target cell or to the extracellular space. This nanomachine consists of three main complexes: proteins in the inner membrane that are T4SS component-like, the baseplate complex, and the tail complex, which are formed by components evolutionarily related to contractile bacteriophage tails. Advances in the T6SS understanding include the functional and structural characterization of at least 13 subunits (so-called core components), which are thought to comprise the minimal apparatus. So far, the main role of T6SS is on bacterial competition by using it to kill neighboring non-immune bacteria for which antibacterial proteins are secreted directly into the periplasm of the bacterial target after cell-cell contact. Interestingly, a few T6SSs have been associated directly to pathogenesis, e.g., roles in biofilm formation and macrophage survival. Here, we focus on the advances on T6SS from the perspective of E. coli pathotypes with emphasis in the secretion apparatus architecture, the mechanisms of pathogenicity of effector proteins, and the events of lateral gene transfer that led to its spread.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31131263

RESUMO

Enteroaggregative Escherichia coli (EAEC) infections are one of the most frequent causes of persistent diarrhea in children, immunocompromised patients and travelers worldwide. The most prominent colonization factors of EAEC are aggregative adherence fimbriae (AAF). EAEC prototypical strain 042 harbors the AAF/II fimbriae variant, which mediates adhesion to intestinal epithelial cells and participates in the induction of an inflammatory response against this pathogen. However, the mechanism and the cell receptors implicated in eliciting this response have not been fully characterized. Since previous reports have shown that TLR4 recognize fimbriae from different pathogens, we evaluated the role of this receptor in the response elicited against EAEC by intestinal cells. Using a mutual antagonist against TLR2 and TLR4 (OxPAPC), we observed that blocking of these receptors significantly reduces the secretion of the inflammatory marker IL-8 in response to EAEC and AAF/II fimbrial extract in HT-29 cells. Using a TLR4-specific antagonist (TAK-242), we observed that the secretion of this cytokine was significantly reduced in HT-29 cells infected with EAEC or incubated with AAF/II fimbrial extract. We evaluated the participation of AAF/II fimbriae in the TLR4-mediated secretion of 38 cytokines, chemokines, and growth factors involved in inflammation. A reduction in the secretion of IL-8, GRO, and IL-4 was observed. Our results suggest that TLR4 participates in the secretion of several inflammation biomarkers in response to AAF/II fimbriae.


Assuntos
Células Epiteliais/metabolismo , Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Receptor 4 Toll-Like/metabolismo , Citocinas/metabolismo , Infecções por Escherichia coli/metabolismo , Células HT29 , Humanos , Inflamação , Interleucina-4 , Interleucina-8 , Intestinos , Receptor 2 Toll-Like/metabolismo
8.
Toxins (Basel) ; 10(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200426

RESUMO

One of the characteristic manifestations of Shiga-toxin-producing Escherichia coli (E. coli) infection in humans, including EHEC and Enteroaggregative E. coli O104:H4, is watery diarrhea. However, neither Shiga toxin nor numerous components of the type-3 secretion system have been found to independently elicit fluid secretion. We used the adult stem-cell-derived human colonoid monolayers (HCM) to test whether EHEC-secreted extracellular serine protease P (EspP), a member of the serine protease family broadly expressed by diarrheagenic E. coli can act as an enterotoxin. We applied the Ussing chamber/voltage clamp technique to determine whether EspP stimulates electrogenic ion transport indicated by a change in short-circuit current (Isc). EspP stimulates Isc in HCM. The EspP-stimulated Isc does not require protease activity, is not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated, but is partially Ca2+-dependent. EspP neutralization with a specific antibody reduces its potency in stimulating Isc. Serine Protease A, secreted by Enteroaggregative E. coli, also stimulates Isc in HCM, but this current is CFTR-dependent. In conclusion, EspP stimulates colonic CFTR-independent active ion transport and may be involved in the pathophysiology of EHEC diarrhea. Serine protease toxins from E. coli pathogens appear to serve as enterotoxins, potentially significantly contributing to watery diarrhea.


Assuntos
Toxinas Bacterianas/toxicidade , Colo/efeitos dos fármacos , Proteínas de Escherichia coli/toxicidade , Transporte de Íons/efeitos dos fármacos , Organoides/efeitos dos fármacos , Serina Endopeptidases/toxicidade , Colo/fisiologia , Escherichia coli Êntero-Hemorrágica , Humanos , Organoides/fisiologia
9.
Gut Microbes ; 9(3): 264-278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543544

RESUMO

Enteroaggregative E. coli (EAEC) is associated with food-borne outbreaks of diarrhea and growth faltering among children in developing countries. A Shiga toxin-producing EAEC strain of serotype O104:H4 strain caused one of the largest outbreaks of a food-borne infection in Europe in 2011. The outbreak was traced to contaminated fenugreek sprouts, yet the mechanisms whereby such persistent contamination of sprouts could have occurred are not clear. We found that under ambient conditions of temperature and in minimal media, pathogenic Shiga toxin-producing EAEC O104:H4 227-11 and non-Shiga toxin-producing 042 strains both produce high levels of exopolysaccharide structures (EPS) that are released to the external milieu. The exopolysaccharide was identified as colanic acid (CA). Unexpectedly, Shiga-toxin producing EAEC strain 227-11 produced 3-6-fold higher levels of CA than the 042 strain, suggesting differential regulation of the CA in the two strains. The presence of CA was accompanied by the formation of large biofilm structures on the surface of sprouts. The wcaF-wza chromosomal locus was required for the synthesis of CA in EAEC 042. Deletion in the glycosyltransferase wcaE gene abolished the production of CA in 042, and resulted in diminished adherence to sprouts when co-cultured at ambient temperature. In conclusion, this work suggests that copious production of CA may contribute to persistence of EAEC in the environment and suggests a potential explanation for the large Shiga toxin-producing EAEC outbreak in 2011.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Polissacarídeos Bacterianos/química , Polissacarídeos/biossíntese , Plântula/microbiologia , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/farmacologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Microbiologia de Alimentos , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Teste de Complementação Genética , Genoma Bacteriano , Humanos , Polissacarídeos/genética , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/ultraestrutura
10.
Bio Protoc ; 8(8): e2802, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34286021

RESUMO

Enteroaggregative Escherichia coli (EAEC) is a recognized cause of acute diarrhea among both children and adults worldwide. EAEC strains are characterized by the presence of aggregative adherence fimbriae (AAF), which play a key role in pathogenesis by mediating attachment to the intestinal mucosa and by triggering host inflammatory responses. The aggregative adherence fimbria II (AAF/II) is the most important adherence factor of EAEC prototype strain 042 (EAEC042) to intestinal cells. Multiple receptors for AAF/II on epithelial cells have been identified including the transmembrane signaling mucin Muc1. This protocol describes a method to measure adherence of EAEC strains to HEK293 cells expressing the Muc1 glycoprotein.

11.
Vet Microbiol ; 211: 180-188, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29102116

RESUMO

We previously developed attenuated rabbit enteropathogenic E. coli (rEPEC) strains which are effective oral vaccines against their parent pathogens by deleting ler, a global regulator of virulence genes. To use these strains as orally administered vectors to deliver other antigens we incorporated the B subunit of shiga-like toxin 1(Stx1) into the passenger domain of the autotransporter EspP expressed on a plasmid. Native EspP enters the periplasm where its passenger domain is exported to the bacterial surface through an outer membrane channel formed by its translocator domain, then cleaved and secreted. Since antigen localization may determine immunogenicity, we engineered derivatives of EspP expressing Stx1B- passenger domain fusions: 1. in cytoplasm 2. in periplasm, 3. surface-attached or 4. secreted. To determine which construct was most immunogenic, rabbits were immunized with attenuated O103 E. coli strain (E22 Δler) alone or expressing Stx1B in each of the above four cellular locations. IgG responses to Stx1B, and toxin-neutralizing antibodies were measured. Animals were challenged with a virulent rabbit Enterohemorrhagic E. coli (EHEC) strain of a different serogroup (O15) than the vaccine strain expressing Stx1 (RDEC-H19) and their clinical course observed. IgG responses to Stx1B subunit were induced in all animals vaccinated with the strain secreting Stx1B, in some vaccinated with surface-expressed Stx1B, but in not animals immunized with periplasmic or cytoplasmic Stx1B. Robust protection was observed only in the group immunized with the vaccine secreting Stx1B. Taken together, our data suggest that secretion of Stx1B, or other antigens, via an autotransporter, may maximize the protective response to live attenuated oral vaccine strains.


Assuntos
Escherichia coli Enteropatogênica/imunologia , Infecções por Escherichia coli/veterinária , Vacinas contra Escherichia coli/imunologia , Imunização/veterinária , Sistemas de Secreção Tipo V/metabolismo , Animais , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Masculino , Plasmídeos/genética , Coelhos , Toxina Shiga/genética , Toxina Shiga/metabolismo , Sistemas de Secreção Tipo V/genética , Virulência
12.
PLoS Pathog ; 13(8): e1006545, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28806780

RESUMO

The AraC Negative Regulators (ANR) comprise a large family of virulence regulators distributed among diverse clinically important Gram-negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., and pathogenic E. coli strains. We have previously reported broad effects of the ANR members on regulators of the AraC/XylS family. Here, we interrogate possible broader effects of the ANR members on the bacterial transcriptome. Our studies focused on Aar (AggR-activated regulator), an ANR family archetype in enteroaggregative E. coli (EAEC) isolate 042. Transcriptome analysis of EAEC strain 042, 042aar and 042aar(pAar) identified more than 200 genes that were differentially expressed (+/- 1.5 fold, p<0.05). Most of those genes are located on the bacterial chromosome (195 genes, 92.85%), and are associated with regulation, transport, metabolism, and pathogenesis, based on the predicted annotation; a considerable number of Aar-regulated genes encoded for hypothetical proteins (46 genes, 21.9%) and regulatory proteins (25, 11.9%). Notably, the transcriptional expression of three histone-like regulators, H-NS (orf1292), H-NS homolog (orf2834) and StpA, was down-regulated in the absence of aar and may explain some of the effects of Aar on gene expression. By employing a bacterial two-hybrid system, LacZ reporter assays, pull-down and electrophoretic mobility shift assay (EMSA) analysis, we demonstrated that Aar binds directly to H-NS and modulates H-NS-induced gene silencing. Importantly, Aar was highly expressed in the mouse intestinal tract and was found to be necessary for maximal H-NS expression. In conclusion, this work further extends our knowledge of genes under the control of Aar and its biological relevance in vivo.


Assuntos
Fator de Transcrição AraC/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Virulência/fisiologia , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase
13.
mBio ; 8(3)2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588132

RESUMO

Enteroaggregative Escherichia coli (EAEC) causes diarrhea and intestinal inflammation worldwide. EAEC strains are characterized by the presence of aggregative adherence fimbriae (AAF), which play a key role in pathogenesis by mediating attachment to the intestinal mucosa and by triggering host inflammatory responses. Here, we identify the epithelial transmembrane mucin MUC1 as an intestinal host cell receptor for EAEC, demonstrating that AAF-mediated interactions between EAEC and MUC1 facilitate enhanced bacterial adhesion. We further demonstrate that EAEC infection also causes elevated expression of MUC1 in inflamed human intestinal tissues. Moreover, we find that MUC1 facilitates AAF-dependent migration of neutrophils across the epithelium in response to EAEC infection. Thus, we show for the first time a proinflammatory role for MUC1 in the host response to an intestinal pathogen.IMPORTANCE EAEC is a clinically important intestinal pathogen that triggers intestinal inflammation and diarrheal illness via mechanisms that are not yet fully understood. Our findings provide new insight into how EAEC triggers host inflammation and underscores the pivotal role of AAFs-the principal adhesins of EAEC-in driving EAEC-associated disease. Most importantly, our findings add a new dimension to the signaling properties of the transmembrane mucin MUC1. Mostly studied for its role in various forms of cancer, MUC1 is widely regarded as playing an anti-inflammatory role in response to infection with bacterial pathogens in various tissues. However, the role of MUC1 during intestinal infections has not been previously explored, and our results describe the first report of MUC1 as a proinflammatory factor following intestinal infection.


Assuntos
Aderência Bacteriana , Células Epiteliais/microbiologia , Escherichia coli/fisiologia , Fímbrias Bacterianas/imunologia , Mucina-1/metabolismo , Infiltração de Neutrófilos , Movimento Celular , Diarreia/microbiologia , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Fímbrias Bacterianas/fisiologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/fisiopatologia , Mucina-1/genética , Neutrófilos/fisiologia , Transdução de Sinais/imunologia
14.
Nutr Res ; 39: 34-42, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28385287

RESUMO

In developing communities, intestinal infection is associated with poor weight gain and linear-growth failure. Prior translational animal models have focused on weight gain investigations into key contributors to linear growth failure have been lacking. We hypothesized that murine intestinal infection with Citrobacter rodentium would induce linear-growth failure associated with systemic inflammation and suppressed serum levels of insulin-like growth factor-1 (IGF-1). We evaluated 4 groups of mice infected or sham-infected on day-of-life 28: uninfected-controls, wild-type C rodentium-infected, partially-attenuated C rodentium-infected (with deletion of 3 serine protease genes involved in colonization), and pair-fed (given the amount of daily food consumed by the wild-type C rodentium group). Relative to the uninfected group, mice infected with wild-type C rodentium exhibited temporal associations of lower food intake, weight loss, linear-growth failure, higher IL-6 and TNF-α and lower IGF-1. However, relative to the pair-fed group, the C rodentium-infected group only differed significantly by linear growth and systemic inflammatory cytokines. Between post-infection days 15-20, the infected group exhibited resolution of systemic inflammation. Between days 16-20, both wild-type C rodentium and pair-fed groups exhibited rapid linear-growth velocities exceeding the uninfected and mutant C rodentium groups; during this time levels of IGF-1 increased to match the uninfected group. We submit this as a model providing important opportunities to study mechanisms of catch-up growth related to intestinal inflammation. We conclude that in addition to known effects of weight loss, infection with C rodentium induces linear-growth failure potentially related to systemic inflammation and low levels of IGF-1, with catch-up of linear growth following resolution of inflammation.


Assuntos
Citrobacter rodentium , Colite/complicações , Colo/microbiologia , Ingestão de Energia/fisiologia , Transtornos do Crescimento/etiologia , Inflamação/etiologia , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Colite/metabolismo , Colite/microbiologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Ingestão de Alimentos , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/microbiologia , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL/anatomia & histologia , Fator de Necrose Tumoral alfa/metabolismo , Aumento de Peso , Redução de Peso
15.
Artigo em Inglês | MEDLINE | ID: mdl-28008386

RESUMO

Enteroaggregative Escherichia coli (EAEC) infections are still one of the most important etiologic pathogens of diarrhea in children worldwide. EAEC pathogenesis comprises three stages: adherence and colonization, production of toxins, and diarrhea followed by inflammation. Previous studies have demonstrated that EAEC strains have the ability to bind to fibronectin (FN); however, the role this extracellular matrix protein plays in the inflammatory response induced by EAEC remains unknown. In this study, we postulated that FN-mediated adherence of EAEC strains to epithelial cells increases the expression of pro-inflammatory genes. To verify this hypothesis, we infected HEp-2 and HT-29 cells, in both the presence and absence of FN, with EAEC reference strain 042. We quantified IL-8 secretion and the relative expression of a set of genes regulated by the NF-κB pathway. Although FN increased EAEC adherence, no changes in IL-8 protein secretion or IL8 gene expression were observed. Similar observations were found in HEp-2 cells transfected with FN-siRNA and infected with EAEC. To evaluate the involvement of AAF/II fimbriae, we infected HEp-2 and HT-29 cells, in both the presence and absence of FN, with an EAEC 042aafA mutant strain transformed with a plasmid harboring the native aafA gene with a site-directed mutation in Lys72 residue (K72A and K72R strains). No changes in IL-8 secretion were observed. Finally, SEM immunogold assay of cells incubated with FN and infected with EAEC revealed that AAF fimbriae can bind to cells either directly or mediated by FN. Our data suggests that FN participates in AAF/II fimbriae-mediated adherence of EAEC to epithelial cells, but not in the inflammatory response of cells infected by this pathogen.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Fibronectinas/imunologia , Inflamação/imunologia , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Linhagem Celular , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fibronectinas/genética , Fibronectinas/farmacologia , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Expressão Gênica , Humanos , Inflamação/genética , Interleucina-8/genética , Interleucina-8/metabolismo , Mutagênese Sítio-Dirigida , NF-kappa B/genética , NF-kappa B/metabolismo
16.
Mol Microbiol ; 101(2): 314-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27038276

RESUMO

AraC Negative Regulators (ANR) suppress virulence genes by directly down-regulating AraC/XylS members in Gram-negative bacteria. In this study, we sought to investigate the distribution and molecular mechanisms of regulatory function for ANRs among different bacterial pathogens. We identified more than 200 ANRs distributed in diverse clinically important gram negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., enterotoxigenic (ETEC) and enteroaggregative E. coli (EAEC), and members of the Pasteurellaceae. By employing a bacterial two hybrid system, pull down assays and surface plasmon resonance (SPR) analysis, we demonstrate that Aar (AggR-activated regulator), a prototype member of the ANR family in EAEC, binds with high affinity to the central linker domain of AraC-like member AggR. ANR-AggR binding disrupted AggR dimerization and prevented AggR-DNA binding. ANR homologs of Vibrio cholerae, Citrobacter rodentium, Salmonella enterica and ETEC were capable of complementing Aar activity by repressing aggR expression in EAEC strain 042. ANR homologs of ETEC and Vibrio cholerae bound to AggR as well as to other members of the AraC family, including Rns and ToxT. The predicted proteins of all ANR members exhibit three highly conserved predicted α-helices. Site-directed mutagenesis studies suggest that at least predicted α-helices 2 and 3 are required for Aar activity. In sum, our data strongly suggest that members of the novel ANR family act by directly binding to their cognate AraC partners.


Assuntos
Fator de Transcrição AraC/genética , Genes araC/genética , Fator de Transcrição AraC/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Genes araC/fisiologia , Bactérias Gram-Negativas/genética , Mutagênese Sítio-Dirigida , Filogenia , Relação Estrutura-Atividade , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Virulência/genética
17.
Nat Immunol ; 17(2): 150-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26595890

RESUMO

Mucosal surfaces are exposed to environmental substances and represent a major portal of entry for microorganisms. The innate immune system is responsible for early defense against infections and it is believed that the interferons (IFNs) constitute the first line of defense against viruses. Here we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity in a manner dependent on neutrophils. This study therefore identifies a previously unknown layer of antiviral defense that exerts its action on epithelial surfaces before the classical IFN response is operative.


Assuntos
Imunidade Inata , Interferons/metabolismo , Mucosa/imunologia , Mucosa/metabolismo , Viroses/imunologia , Viroses/metabolismo , Animais , Linhagem Celular , Quimiocina CXCL10/biossíntese , Modelos Animais de Doenças , Feminino , Expressão Gênica , Glicosilação , Herpes Simples/genética , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 2/imunologia , Humanos , Interferons/genética , Ligantes , Camundongos , Camundongos Knockout , Mucosa/virologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Polissacarídeos/imunologia , Receptores CXCR3/deficiência , Receptores CXCR3/metabolismo , Vagina/imunologia , Vagina/metabolismo , Vagina/virologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Carga Viral , Viroses/virologia
18.
Infect Immun ; 83(5): 1893-903, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712927

RESUMO

Enterotoxigenic Escherichia coli (ETEC), a leading cause of acute diarrhea, colonizes the intestine by means of adhesins. However, 15 to 50% of clinical isolates are negative for known adhesins, making it difficult to identify antigens for broad-coverage vaccines. The ETEC strain 1766a, obtained from a child with watery diarrhea in Chile, harbors the colonization factor CS23 but is negative for other known adhesins. One clone, derived from an ETEC 1766a genomic library (clone G10), did not produce CS23 yet was capable of adhering to Caco-2 cells. The goal of this study was to identify the gene responsible for this capacity. Random transposon-based mutagenesis allowed the identification of a 4,110-bp gene that codes for a homologue of the temperature-sensitive hemagglutinin (Tsh) autotransporter described in avian E. coli strains (97% identity, 90% coverage) and that is called TleA (Tsh-like ETEC autotransporter) herein. An isogenic ETEC 1766a strain with a tleA mutation showed an adhesion level similar to that of the wild-type strain, suggesting that the gene does not direct attachment to Caco-2 cells. However, expression of tleA conferred the capacity for adherence to nonadherent E. coli HB101. This effect coincided with the detection of TleA on the surface of nonpermeabilized bacteria, while, conversely, ETEC 1766a seems to secrete most of the produced autotransporter to the medium. On the other hand, TleA was capable of degrading bovine submaxillary mucin and leukocyte surface glycoproteins CD45 and P-selectin glycoprotein ligand 1 (PSGL-1). These results suggest that TleA promotes colonization of the intestinal epithelium and that it may modulate the host immune response.


Assuntos
Adesinas Bacterianas/genética , Adesinas de Escherichia coli/genética , Aderência Bacteriana , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/fisiologia , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/genética , Adesinas Bacterianas/metabolismo , Adesinas de Escherichia coli/metabolismo , Animais , Células CACO-2 , Pré-Escolar , Chile , Elementos de DNA Transponíveis , Diarreia/microbiologia , Escherichia coli Enterotoxigênica/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Mutagênese Insercional
19.
PLoS Pathog ; 10(9): e1004404, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25232738

RESUMO

Enteroaggregative Escherichia coli (EAEC) is a leading cause of acute and persistent diarrhea worldwide. A recently emerged Shiga-toxin-producing strain of EAEC resulted in significant mortality and morbidity due to progressive development of hemolytic-uremic syndrome. The attachment of EAEC to the human intestinal mucosa is mediated by aggregative adherence fimbria (AAF). Using X-ray crystallography and NMR structures, we present new atomic resolution insight into the structure of AAF variant I from the strain that caused the deadly outbreak in Germany in 2011, and AAF variant II from archetype strain 042, and propose a mechanism for AAF-mediated adhesion and biofilm formation. Our work shows that major subunits of AAF assemble into linear polymers by donor strand complementation where a single minor subunit is inserted at the tip of the polymer by accepting the donor strand from the terminal major subunit. Whereas the minor subunits of AAF have a distinct conserved structure, AAF major subunits display large structural differences, affecting the overall pilus architecture. These structures suggest a mechanism for AAF-mediated adhesion and biofilm formation. Binding experiments using wild type and mutant subunits (NMR and SPR) and bacteria (ELISA) revealed that despite the structural differences AAF recognize a common receptor, fibronectin, by employing clusters of basic residues at the junction between subunits in the pilus. We show that AAF-fibronectin attachment is based primarily on electrostatic interactions, a mechanism not reported previously for bacterial adhesion to biotic surfaces.


Assuntos
Adesinas de Escherichia coli/imunologia , Aderência Bacteriana/imunologia , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Escherichia coli/patogenicidade , Fímbrias Bacterianas/química , Interações Hospedeiro-Patógeno/imunologia , Adesinas de Escherichia coli/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fibronectinas/metabolismo , Humanos , Immunoblotting , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Conformação Proteica , Homologia de Sequência de Aminoácidos
20.
Biomed Res Int ; 2014: 781246, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177698

RESUMO

Adherence to the intestinal epithelia is a key feature in enteroaggregative Escherichia coli (EAEC) infection. The aggregative adherence fimbriae (AAFs) are involved in EAEC interaction with receptors at the surface of intestinal cells. We and others have demonstrated that fibronectin is a receptor for AAF/II fimbriae. Considering that the major cellular receptor of fibronectin is integrin α5ß1, in this study we evaluated the participation of this receptor in the fibronectin-mediated adherence of EAEC strain 042 to intestinal cells. We found that EAEC strain 042 has the ability to bind directly and indirectly to integrin α5ß1; direct binding was not mediated by AAF/II fimbriae and indirect binding was mediated by AAF/II and fibronectin. Coimmunoprecipitation assays confirmed the formation of the complex AafA/fibronectin/integrin α5ß1. To evaluate EAEC adherence to intestinal cells, T84 cells were incubated with fibronectin and an antibody that blocks the interaction region of integrin α5ß1 to fibronectin, the RGD site. Under these conditions, we found the number of adherent bacteria to epithelial cells significantly reduced. Additionally, fibronectin-mediated adherence of EAEC strain 042 was abolished in HEp-2 cells transfected with integrin α5 shRNA. Altogether, our data support the involvement of integrin α5ß1 in the fibronectin-mediated EAEC binding to intestinal cells.


Assuntos
Aderência Bacteriana/fisiologia , Enterócitos/fisiologia , Escherichia coli/fisiologia , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Linhagem Celular , Enterócitos/citologia , Escherichia coli/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA